Synthesis 2010(11): 1883-1890  
DOI: 10.1055/s-0029-1218785
SPECIALTOPIC
© Georg Thieme Verlag Stuttgart ˙ New York

Syntheses of Mono-, Di-, and Trifluorinated Styrenic Monomers

Justyna Walkowiaka, Teresa Martinez del Campoa, Bruno Amedurib, Véronique Gouverneur*a
a Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
b Institut Charles Gerhardt, Ingénierie et Architectures Macromoléculaires, UMR CNS 5253, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l’Ecole Normale, 34296 Montpellier, France
Fax: +44(1865)275644; e-Mail: veronique.gouverneur@chem.ox.ac.uk;
Further Information

Publication History

Received 29 April 2010
Publication Date:
12 May 2010 (eFirst)

Abstract

Concise syntheses of gram quantities of three fluorinated α-methylstyrenic monomers suitable for polymerisation studies are disclosed, all based on the use of reasonably priced commercially available starting materials and reagents.

    References

  • 1a Wall LA. Fluoropolymers   Wiley; New York: 1972. 
  • 1b Feiring AE. In Organofluorine Chemistry: Principles and Commercial Applications   Banks RE. Smart BE. Tatlow JC. Plenum Press; New York: 1994.  Chap. 15. p.339-372  
  • 1c Scheirs J. Modern Fluoropolymers   Wiley; New York: 1997. 
  • 1d Hougham G. Davidson T. Cassidy P. Johns K. Fluoropolymers   Kluvert; New York: 1999. 
  • 1e Ameduri B. Boutevin B. Well Architectured Fluoropolymers: Synthesis, Properties and Applications   Elsevier; Amsterdam: 2004. 
  • 2a Kobayashi S, Munekuta S, Unoki M, and Iwamoto T. inventors; Patent EP  0239935.  1987
  • 2b Yamamoto T, Matsumoto T, Shimada K, Uozu Y, and Murata R. inventors; Patent EP  0256765.  1988
  • 2c Skutnik BJ. inventors; Patent AU  569145.  1988
  • 2d Yamamoto S, and Matsumoto M. inventors; Patent JP  63430104.  1988
  • 3 Boutevin B. Pietrasanta Y. Les Acrylates et poly Acrylates fluorés   Erec; Paris: 1998. 
  • 4 Banks BA. The Use of Fluoropolymers in Space Applications, Modern Fluoropolymers   Wiley; New York: 1999.  Chap. 4. p.103-114  
  • 5a Souzy R. Ameduri B. Boutevin B. J. Polym. Sci., Part A: Polym. Chem.  2004,  42:  5077 
  • 5b Kostov G. Tredwell M. Ameduri B. Gouverneur V. J. Poly. Sci., Part A: Polym. Chem.  2007,  45:  3843 
  • 6a Olofsson K. Larhed M. Hallberg A. J. Org. Chem.  1998,  63:  5076 
  • 6b Tredwell M. Gouverneur V. Org. Biomol. Chem.  2006,  4:  26 
  • 6c Nyffeler PT. Duron SG. Burkart MD. Vincent SP. Wong C.-H. Angew. Chem. Int. Ed.  2005,  44:  192 
  • 7 Mo J. Xu L. Xiao J. J. Am. Chem. Soc.  2005,  127:  751 
  • 8 Luo H.-Q. Loh T.-P. Tetrahedron Lett.  2009,  50:  1554 
  • 9a Mo J. Xu L. Ruan J. Liu S. Xiao J. Chem. Commun.  2006,  3591 
  • 9b Pei W, Sun L, and Xiao J. inventors; Patent CN  1,634,825.  2005
  • 10 Organ MG. Murray AP. J. Org. Chem.  1997,  62:  1523 
  • 11 Bresciani S. Slawin AMZ. O’Hagan D. J. Fluorine Chem.  2009,  130:  537 
  • 12a Kotov SV. Pedersen SD. Qiu W. Qiu Z.-M. Burton DJ. J. Fluorine Chem.  1997,  82:  13 
  • 12b Stone C. Daynard TS. Hu L.-Q. Mah C. Steck AE. J. New Mater. Electrochem. Syst.  2000,  3:  43 
  • 12c Lafitte B. Jannasch P. On the Prospects for Phosphonated Polymers as Proton-Exchange Fuel Cell Membranes, In Advances in Fuel Cells   Zhao T. Kreuer K.-D. Van Nguyen T. Elsevier; Amsterdam: 2007.  Chap. 3.
  • 13a Ohmori H. Nakai S. Masui M. J. Chem. Soc., Perkin Trans. 1  1979,  2023 
  • 13b Obrycki R. Griffin CE. J. Org. Chem.  1968,  33:  632 
  • 13c Plumb JB. Obrycki R. Griffin CE. J. Org. Chem.  1966,  31:  2455 
  • 14a Balthazor TM. Grabiak RC. J. Org. Chem.  1980,  45:  5425 
  • 14b Tavs P. Chem. Ber./Recl  1970,  103:  2428 
  • 15a Schwan AL. Chem. Soc. Rev.  2004,  33:  218 
  • 15b Hirao T. Masunaga T. Yamada N. Ohshiro Y. Agawa T. Bull. Chem. Soc. Jpn.  1982,  55:  909 
  • 16a Burger A. Dawson ND. J. Org. Chem.  1951,  16:  1250 
  • 16b Dawson ND. Burger A. J. Org. Chem.  1953,  18:  207 
  • 16c Eymery F. Iorga B. Savignac P. Tetrahedron  1999,  55:  13109 
  • 17a Organofluorine Compounds. Chemistry and Applications   Hiyama T. Springer; New York: 2000. 
  • 17b Organofluorine Chemistry - Principles and Commercial Applications   Banks RE. Smart BE. Tatlow JC. Plenum Press; New York: 1994. 
  • 17c Fluorine in Bioorganic Chemistry   Welch JT. Eshwarakrishman S. Wiley; New York: 1991. 
  • 17d Fluorine-Containing Molecules. Structure, Reactivity, Synthesis, and Applications   Liebman JF. Greenberg A. Dolbier WR. VCH; New York: 1988. 
  • 18a Shimazu M. Maeda T. Fujisawa T. J. Fluorine Chem.  1995,  71: 
  • 18b Kuroboshi M. Hiyama T. J. Fluorine Chem.  1994,  69:  127 
  • 18c Hugenberg V. Haufe G. Synlett  2008,  106 
  • 18d Hiyama T, and Kuroboshi M. inventors; Patent JP  4264041.  1992
  • 19a Burton DJ. Wiemers DM. J. Fluorine Chem.  1981,  18:  573 
  • 19b Li X.-Y. Jiang X.-K. Gong Y.-F. Pan H.-Q. Acta Chim. Sin. (Engl. Ed.)  1985,  43:  260 
  • 19c Prakash GKS. Hu J. Olah GA. J. Org. Chem.  2003,  68:  4457 
  • 21a Prakash GKS. Hu J. Wang Y. Olah GA. Eur. J. Org. Chem.  2005,  2218 
  • 21b Ni C. Hu J. Tetrahedron Lett.  2005,  46:  8273 
  • 22 When reductive desulfonation was performed prior to the dehydration, compound 17 was observed, but it was contaminated by significant amount of inseparable byproduct. Kazennikova GV. Talalaeva TV. Zimin AV. Kocheshkov KA. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk  1961,  6:  1060 
  • 23 Gøgsig TM. Søbjerg LS. Lindhardt AT. Jensen KL. Skrydstrup T. J. Org. Chem.  2008,  73:  3404 
  • 24 Jiang B. Xu Y. Tetrahedron Lett.  1992,  33:  511 
  • 25 Pan R.-q. Liua X.-x. Deng M.-z. J. Fluorine Chem.  1999,  95:  167 
20

Trimethyl[difluoro(phenyl)methylsulfonyl]silane was observed in the crude mixture as a major product along with traces of sulfone 17. Notably, purification on Biotage (Biotage KP-SIL SNAP Flash Cartridges) resulted in the recovery of sulfone 17, suggesting that desilylation occurred upon purification.