Synthesis 2010(9): 1431-1432  
DOI: 10.1055/s-0029-1218696
SHORTPAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Efficient Synthesis of Substituted Diarylsilanes

Peter Giglera, Wolfgang A. Herrmann*a, Fritz E. Kühn*a,b
a Institut für Siliciumchemie, Lehrstuhl für Anorganische Chemie, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching b. München, Germany
Fax: +49(89)28913473; e-Mail: wolfgangherrmann@ch.tum.de ;
b Molecular Catalysis, Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching b. München, Germany
Fax: +49(89)28913473; e-Mail: fritz.kuehn@ch.tum.de;
Further Information

Publication History

Received 9 February 2010
Publication Date:
09 March 2010 (online)

Abstract

A highly efficient synthesis of substituted diarylsilanes is presented. The treatment of substituted arylbromides with tert-butyllithium in diethyl ether at -78 ˚C, followed by the addition to dichlorodiethoxysilane at the same temperature, leads to the quantitative formation of diaryldiethoxysilane. Selective substitution of the chlorine atoms allows an aqueous work up in air. Subsequently, the diaryldiethoxysilane is reduced to the corresponding diarylsilane by stirring with lithium aluminum hydride in diethyl ether. The product is purified by bulb-to-bulb distillation. This method does not lead to any mono- or tri-substituted products and avoids hand­ling gaseous and explosive dichlorosilane, which is a significant advantage over previously reported procedures.

    References

  • 1 Corey JY. John CS. Ohmsted MC. Chang LS. J. Organomet. Chem.  1986,  304:  93 
  • 2 Chang LS. Corey JY. Organometallics  1989,  8:  1885 
  • 3 Hydrosilylation, In Advances in Silicon Science   Marciniec B. Springer; Heidelberg: 2009.  p.289-320  
  • 4 Osakada K. Sarai S. Koizumi T. Yamamoto T. Organometallics  1997,  16:  3973 
  • 5a West R. Rochow EG. J. Org. Chem.  1953,  18:  303 
  • 5b Rofouei MK. Lawless GA. Morsali A. Hitchcock PB. Inorg. Chem.  2006,  359:  3815 
  • 6a Pink HS. Kipping FS. J. Chem. Soc., Trans.  1923,  123:  2830 
  • 6b Horvath RF. Chan TH. J. Org. Chem.  1987,  52:  4489 
  • 6c Chiappe C. Imperato G. Lenoir D. Napolitano E. Tetrahedron Lett.  2006,  47:  8893 
  • 6d Braddock-Wilking J. Zhang Y. Corey JY. Rath NP. J. Organomet. Chem.  2008,  693:  1233 
  • 7 Braddock-Wilking J. Schieser M. Brammer L. Huhmann J. Shaltout R. J. Organomet. Chem.  1995,  499:  89 
  • 8 Tour JM. John JA. Stephens EB. J. Organomet. Chem.  1992,  429:  89301 
  • 9 Corriu RJP. Kpoton A. Poirier M. Royo G. de Saxcé A. Young JC. J. Organomet. Chem.  1990,  395:  1 
  • 10 Prince PD. Bearpark MJ. McGrady GS. Steed JW. J. Chem. Soc., Dalton Trans.  2008,  271 
  • 11 Gilman H. Miller LS. J. Am. Chem. Soc.  1951,  73:  968 
  • 12 Larsson E. Bjellerup L. J. Am. Chem. Soc.  1953,  75:  995 
  • 13 Pangborn AB. Giardello MA. Grubbs RH. Rosen RK. Timmers FJ. Organometallics  1996,  15:  1518