Synlett 2009(16): 2679-2681  
DOI: 10.1055/s-0029-1217751
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Studies Toward the Synthesis of Inhibitors of Mycobacterium tuberculosis Cell-Wall Biosynthesis: The Assembly of Triazole-Linked 1,6-α-d-Oligomannosides via Click CuAAC

Mauro Lo Contea, Angela Chamberyb, Alberto Marra*a, Alessandro Dondoni*a
a Dipartimento di Chimica, Laboratorio di Chimica Organica, Università di Ferrara, Via L. Borsari 46, 44100 Ferrara, Italy
Fax: +39(0532)9455167; e-Mail: mra@unife.it; e-Mail: adn@unife.it;
b Dipartimento di Scienze della Vita, II Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
Further Information

Publication History

Received 11 June 2009
Publication Date:
04 September 2009 (online)

Abstract

A versatile synthesis of 1,6-α-d-oligomannosides featuring the 1,4-disubstituted triazole ring as interglycosidic tether is presented via iterative copper(I)-catalyzed azide-alkyne cycloaddition. Free hydroxy hexamannoside and decamannoside featuring a capping 6-deoxymannose fragment have been prepared and characterized.

    References and Notes

  • 1a The Return of the White Plague: Global Poverty and the New Tuberculosis   Gaudy M. Zumla A. Verso; London: 2003. 
  • 1b Ryan F. The Forgotten Plague   Little, Brown & Co.; Canada: 1992.  p.415 
  • 2 Brennan PJ. Nikaido H. Annu. Rev. Biochem.  1995,  64:  29 
  • 3 Morita YS. Patterson JH. Billman-Jacobe H. McConville MJ. Biochem. J.  2004,  378:  589 
  • 4a Khoo KH. Dell A. Morris HR. Brennan PJ. Chatterjee D. Glycobiology  1995,  5:  117 
  • 4b Chatterjee D. Hunter SW. McNeil M. Brennan PJ. J. Biol. Chem.  1992,  267:  6228 
  • For the chemical synthesis of oligomannan and oligoarabinan fragments and their lipoconjugates, see:
  • 5a Jayaprakash KN. Chaudhuri SR. Murty CVSR. Fraser-Reid B. J. Org. Chem.  2007,  72:  5534 
  • 5b Joe M. Bai Y. Nacario RC. Lowary TL. J. Am. Chem. Soc.  2007,  129:  9885 
  • 5c Fraser-Reid B. Chaudhuri SR. Jayaprakash KN. Lu J. Ramamurty CVS. J. Org. Chem.  2008,  73:  9732 
  • 6 Watt JA. Williams SJ. Org. Biomol. Chem.  2005,  3:  1982 
  • 7 For an earlier synthesis of triazole-mannose oligomers, see: Cheshev P. Marra A. Dondoni A. Org. Biomol. Chem.  2006,  4:  3225 
  • 8 Dalvie DK. Kalgutkar AS. Khojasteh-Bakht SC. Obach RS. O’Donnell JP. Chem. Res. Toxicol.  2002,  15:  269 
  • 9 Horne WS. Yadav MK. Stout CD. Ghadiri MR.
    J. Am. Chem. Soc.  2004,  126:  15366 
  • 10a Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed.  2002,  41:  2596 
  • 10b Tornoe CW. Christensen C. Meldal M. J. Org. Chem.  2002,  67:  3057 
  • 13 Boyall D. López F. Sasaki H. Frantz D. Carreira EM. Org. Lett.  2000,  2:  4233 
11

The building block employed in the earlier synthesis was an ethynyl α-d-C-mannoside. Therefore, each cycle was constituted of the click azide-alkyne reaction and then transformation of the 6-hydroxy into azido group in the resulting product.

12

It has to be noted that attempts to synthesize compound 4 by addition of acetone to ethynyl 6-azido-2,3,4-tri-O-benzyl-6-deoxy-α-d-C-mannopyranoside failed in our hands. The basic conditions required for this process induced the 1,2-elimination of benzyl alcohol leading to the undesired glycal.

14

Compound 9 in ref. 7 was treated with diphenylphosphoryl azide (DPPA) and DBU under microwave irradiation (120 ˚C, 2 h) to give 11 in 78% isolated yield (see Supporting Information).