Synlett 2009(13): 2157-2161  
DOI: 10.1055/s-0029-1217568
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Enantioselective Ring Expansion of Prolinols: An Efficient and Short Synthesis of 2-Phenylpiperidin-3-ol Derivatives and 3-Hydroxypipecolic Acids

Anne Cochia, Benjamin Burgera, Cristina Navarroa, Domingo Gomez Pardo*a, Janine Cossy*a, Yang Zhaob, Theodore Cohenb
a Laboratoire de Chimie Organique, ESPCI ParisTech, CNRS, 10 Rue Vauquelin, 75231 Paris Cedex 05, France
Fax: +33(1)40794660; e-Mail: janine.cossy@espci.fr; e-Mail: domingo.gomez-pardo@espci.fr;
b Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
Further Information

Publication History

Received 10 April 2009
Publication Date:
16 July 2009 (online)

Abstract

A very short route to 2-phenylpiperidin-3-ol derivatives and 3-hydroxypipecolic acids is described. The approach uses two key steps: a one-pot reduction/Grignard addition sequence applied to alkyl proline esters and a ring expansion applied to the corresponding prolinols.

    References and Notes

  • 1a Pinder AR. Nat. Prod. Rep.  1989,  6:  67 
  • 1b Pinder AR. Nat. Prod. Rep.  1992,  9:  17 
  • 1c Pinder AR. Nat. Prod. Rep.  1992,  9:  491 
  • 1d Nadin A. Contemp. Org. Synth.  1997,  4:  387 
  • 1e Bailey PD. Milwood PA. Smith PD. Chem. Commun.  1998,  663 
  • 1f Bols M. Acc. Chem. Res.  1998,  31:  1 
  • 1g Mitchinson A. Nadin A.
    J. Chem. Soc., Perkin Trans. 1  1999,  2553 
  • 2 Fodor GB. Colasanti B. In Alkaloids: Chemical and Biological Perspectives   Vol. 3:  Pelletier SW. Wiley-Interscience; New York: 1985.  p.1 
  • 3a Baker R, Harrison T, Hollingworth GJ, Swain CJ, and Williams BJ. inventors; EP  528,495A1. 
  • 3b Harrison T. Williams BJ. Swain CJ. Ball RG. Bioorg. Med. Chem. Lett.  1994,  4:  2545 
  • 3c Kramer MS. Cutler N. Feighner J. Shrivastava R. Carman J. Sramek JJ. Reines SA. Liu G. Snavely D. Wyatt-Knowles E. Hale JJ. Mills SG. MacCoss M. Swain CJ. Harrison T. Hill RG. Hefti F. Scolnick EM. Cascieri MA. Chicchi GG. Sadowski S. Williams AR. Hewson L. Smith D. Carlson EJ. Hargreaves RJ. Rupniak NMJ. Science  1998,  1640 
  • 4a Baker R, Cutis NR, Elliott JM, Harrison T, Hollingworth GJ, Jackson PS, Kulagowski JJ, Sewxard EM, Swain CJ, and Williams BJ. inventors; Int. Patent WO  97/49710. 
  • 4b Kulagowski JJ. Curtis NR. Swain CJ. Williams BJ. Org. Lett.  2001,  3:  667 
  • 5a von Euler US. Gaddum JH. J. Physiol.  1931,  72:  74 
  • 5b Lotz M. Vaughan JH. Carson DA. Science  1987,  235:  893 
  • 5c Lotz M. Vaughan JH. Carson DA. Science  1988,  241:  1218 
  • 5d Mantyh CR. Gates TS. Zimmerman RP. Welton ML. Passaro EP. Vigna SR. Maggio JE. Kruger L. Manthy PW. Proc. Natl. Acad. Sci. U.S.A.  1998,  85:  3235 
  • 5e Goadsby PJ. Edvinsson L. Ekman R. Ann. Neurol.  1988,  23:  193 
  • 5f Perianan A. Synderman R. Malfroy B. Biochem. Biophys. Res. Commun.  1989,  161:  520 
  • 5g Guard S. Watson SP. Neurochem. Int.  1991,  18:  149 
  • 6a Suzuki K. Sato T. Morika M. Nagai K. Kenji A. Yamaguchi H. Sato TJ. J. Antibiot.  1991,  44:  479 
  • 6b Sato T. Hirayama F. Saito T. J. Antibiot.  1991,  44:  1367 
  • 6c Scott JD. Tippie TN. Williams RM. Tetrahedron Lett.  1998,  39:  3659 
  • 7 Quibell M. Benn A. Flinn N. Monk T. Ramjee M. Wang Y. Watts J. Bioorg. Med. Chem.  2004,  12:  5689 
  • For syntheses of (+)-L-733,060, see:
  • 8a Harrison T. Williams BJ. Swain CJ. Ball RG. Bioorg. Med. Chem. Lett.  1994,  4:  2545 
  • 8b Calvez O. Chiaroni A. Langlois N. Tetrahedron Lett.  1998,  39:  9447 
  • 8c Calvez O. Langlois N. Tetrahedron Lett.  1999,  40:  7099 
  • 8d Stadler H. Bös M. Heterocycles  1999,  51:  1067 
  • 8e Tomooka K. Nakazaki A. Nakaï T. J. Am. Chem. Soc.  2000,  122:  408 
  • 8f Bhaskar G. Rao BV. Tetrahedron Lett.  2003,  44:  951 
  • 8g Huang P.-Q. Liu L.-X. Wei B.-G. Ruan Y.-P. Org. Lett.  2003,  5:  1927 
  • 8h Yoon Y.-J. Joo J.-E. Lee K.-Y. Kim Y.-H. Oh C.-Y. Ham W.-H. Tetrahedron Lett.  2005,  46:  739 
  • 8i Kandula SRV. Kumar P. Tetrahedron: Asymmetry  2005,  16:  3579 
  • 8j Oshitari T. Mandai T. Synlett  2006,  3395 
  • 8k Cherian SK. Kumar P. Tetrahedron: Asymmetry  2007,  18:  892 
  • 8l Emmanuvel L. Sudalai A. Tetrahedron Lett.  2008,  49:  5736 
  • 8m Liu R.-H. Fang K. Wang B. Xu M.-H. Lin G.-Q. J. Org. Chem.  2008,  73:  3307 
  • For synthesis of (-)-L-733,061, see:
  • 8n Liu L.-X. Ruan Y.-P. Guo Z.-Q. Huang P.-Q. J. Org. Chem.  2004,  69:  6001 
  • 8o Takahashi K. Nakano H. Fujita R. Tetrahedron Lett.  2005,  46:  8927 
  • 9 For synthesis of II, see: Kulagowski JJ. Curtis NR. Swain CJ. Williams BJ. Org. Lett.  2001,  3:  667 
  • For the synthesis of 3-hydroxypipecolic acids, see:
  • 10a Roemmele RC. Rapoport H. J. Org. Chem.  1989,  54:  1866 
  • 10b Drummond J. Johnson G. Nickell DG. Ortwine DF. Bruns RF. Welbaum B. J. Med. Chem.  1989,  32:  2116 
  • 10c Agami C. Couty F. Mathieu H. Tetrahedron Lett.  1996,  37:  4001 
  • 10d Greck C. Ferreira F. Genêt J.-P. Tetrahedron Lett.  1996,  37:  2031 
  • 10e Makara GM. Marshall GR. Tetrahedron Lett.  1997,  38:  5069 
  • 10f Battistini L. Zanardi F. Rassu G. Spanu P. Pelosi G. Gasparri Fava G. Belicchi Ferrari M. Casiraghi G. Tetrahedron: Asymmetry  1997,  8:  2975 
  • 10g Sugisaki CH. Carroll PJ. Correira CRD. Tetrahedron Lett.  1998,  39:  3413 
  • 10h Scott JD. Tippie TN. Williams RM. Tetrahedron Lett.  1998,  39:  3659 
  • 10i Shibasaki T. Sakurai W. Hasegawa A. Uosaki Y. Mori H. Yoshida M. Ozaki A. Tetrahedron Lett.  1999,  40:  5227 
  • 10j Horikawa M. Busch-Petersen J. Corey EJ. Tetrahedron Lett.  1999,  40:  3843 
  • 10k Jourdant A. Zhu J. Tetrahedron Lett.  2000,  41:  7033 
  • 10l Scott JD. Williams RM. Tetrahedron Lett.  2000,  41:  8413 
  • 10m Quibell M. Benn A. Flinn N. Monk T. Ramjee M. Wang Y. Watts J. Bioorg. Med. Chem.  2004,  12:  5689 
  • 10n Bodas MS. Kumar P. Tetrahedron Lett.  2004,  45:  8461 
  • 10o Kumar P. Bodas MS. J. Org. Chem.  2005,  70:  360 
  • 10p Kim IS. Ji YJ. Jung YH. Tetrahedron Lett.  2006,  47:  7289 
  • 10q Kim IS. Oh JS. Zee OP. Jung YH. Tetrahedron  2007,  63:  2622 
  • 10r Takahashi R. Miyagawa T. Yoshimura Y. Kato A. Adachi I. Takahata H. Bioorg. Med. Chem.  2008,  18:  1810 
  • 10s Alegret C. Ginesta X. Riera A. Eur. J. Org. Chem.  2008,  1789 
  • 10t Liu L.-X. Peng Q.-L. Huang P.-Q. Tetrahedron: Asymmetry  2008,  19:  1200 
  • 10u Kalamkar NB. Kasture VM. Dhavale DD. J. Org. Chem.  2008,  73:  3619 
  • 10v Pham V.-T. Joo J.-E. Tian Y.-S. Chung Y.-S. Lee K.-Y. Oh C.-Y. Ham W.-H. Tetrahedron: Asymmetry  2008,  19:  318 
  • For comprehensive reviews, see:
  • 11a Cossy J. Gomez Pardo D. Chemtracts  2002,  15:  579 
  • 11b Cossy J. Gomez Pardo D. Targets in Heterocyclic Systems   Vol. 6:  Attanasi OA. Spinelli D. Italian Society of Chemistry; Rome: 2002.  p.1 
  • 12a Cossy J. Dumas C. Michel P. Gomez Pardo D. Tetrahedron Lett.  1995,  36:  549 
  • 12b Cossy J. Dumas C. Gomez Pardo D. Synlett  1997,  905 
  • 12c Cossy J. Dumas C. Gomez Pardo D. Bioorg. Med. Chem. Lett.  1997,  7:  1343 
  • 12d Wilken J. Kossenjans M. Saak W. Haase D. Pohl S. Martens J. Liebigs Ann./Recl.  1997,  573 
  • 12e Langlois N. Calvez O. Synth. Commun.  1998,  28:  4471 
  • 12f Davis PW. Osgood SA. Hébert N. Sprankle KG. Swayze EE. Biotechnol. Bioeng.  1999,  61:  143 
  • 12g Cossy J. Dumas C. Gomez Pardo D. Eur. J. Org. Chem.  1999,  1693 
  • 12h Michel P. Rassat A. J. Org. Chem.  2000,  65:  2572 
  • 12i Cossy J. Mirguet O. Gomez Pardo D. Synlett  2001,  1575 
  • 12j Brandi A. Cicchi S. Paschetta V. Gomez Pardo D. Cossy J. Tetrahedron Lett.  2002,  43:  9357 
  • 12k Deyine A. Delcroix J.-M. Langlois N. Heterocycles  2004,  64:  207 
  • 12l Déchamps I. Gomez Pardo D. Karoyan P. Cossy J. Synlett  2005,  1170 
  • 12m Roudeau R. Gomez Pardo D. Cossy J. Tetrahedron  2006,  62:  2388 
  • 12n Mena M. Bonjoch J. Gomez Pardo D. Cossy J. J. Org. Chem.  2006,  71:  5930 
  • 12o Déchamps I. Gomez Pardo D. Cossy J. ARKIVOC  2007,  (v):  38 
  • 12p Déchamps I. Gomez Pardo D. Cossy J. Tetrahedron  2007,  63:  9082 
  • 12q Métro T.-X. Gomez Pardo D. Cossy J. J. Org. Chem.  2007,  72:  6556 
  • 12r Métro T.-X. Gomez Pardo D. Cossy J. Synlett  2007,  2888 
  • 12s Cossy J. Gomez Pardo D. Dumas C. Mirguet O. Déchamps I. Métro T.-X. Burger B. Roudeau R. Appenzeller J. Cochi A. Chirality  2009,  in press
  • 13a Bilke JL. Moore SP. O’Brien P. Gilday J. Org. Lett.  2009,  11:  1935 
  • 13b

    O’Brien et al. (ref 13a) have shown that the ring expansion of substituted pyrrolidinols 2b and 3b using TFAA (1.5 equiv), Et3N (3 equiv), in refluxing THF for 48 h, led to the ring-expanded compounds.

  • 14a Ibuka T. Habashita H. Otaka A. Fujii N. Ogushi Y. Uyehara T. Yamamoto Y. J. Org. Chem.  1991,  56:  4370 
  • 14b Ito H. Ikeuchi Y. Taguchi T. Hanzawa Y. Shiro M. J. Am. Chem. Soc.  1994,  116:  5469 
  • 14c Zhao Y. Master"s Thesis   University of Pittsburgh; Pittsburgh: 2005; http://etd.library.pitt.edu/ETD/available/etd-12072005-173655/
  • 14d

    The excellent diastereoselectivity in the DIBAL-H/Grignard sequence was probably due to catalysis of the conversion of R2 to R1 (Scheme  [³] ) due to the presence of MgBr2 in the Grignard reagent, whereas ZnCl2 or heat was used for this purpose in Ref. 14c

  • 17 Langlois et al. have shown that the ring expansion of substituted pyrrolidinols 3b using TFAA (1.5 equiv), Et3N (3 equiv), in refluxing THF for 44 h, led to the ring-expanded compound 5 in 22% yield, together with the starting material, see: Calvez O. Chiaroni A. Langlois N. Tetrahedron Lett.  1998,  39:  9447 
  • 18 For a related rearrangement under different conditions, see: Lee J. Hoang T. Lewis S. Weissman SA. Askin D. Volante RP. Reider PJ. Tetrahedron Lett.  2001,  42:  6223 
  • 19a Liu L.-X. Ruan Y.-P. Guo Z.-Q. Huang P.-Q. J. Org. Chem.  2004,  69:  6001 
  • 19b Takahashi K. Nakano H. Fujita R. Tetrahedron Lett.  2005,  46:  8927 
  • 20a Calvez O. Langlois N. Tetrahedron Lett.  1999,  40:  7099 
  • 20b Calvez O. PhD Dissertation   Université Paris XI Orsay; France: 2001. 
  • 21 Haddad M. Larchevêque M. Tetrahedron: Asymmetry  1999,  10:  4231 
15

Ester reduction/alkylation method: DIBAL-H (1.0 M in hexane, 2.61 mL, 2.61 mmol, 1.2 equiv) was added to a solution of N-benzylproline ethyl ester (500 mg, 2.17 mmol, 1 equiv) in CH2Cl2 (10 mL) at -78 ˚C. The resulting solution was stirred at -78 ˚C for 30 min, followed by the addition of commercially available PhMgBr (1.0 M in THF, 6.52 mL, 6.52 mmol, 3 equiv) dropwise at -78 ˚C. The solution was then allowed to slowly warm to r.t. overnight. Sat. aq NH4Cl (10 mL) was added to quench the reaction. Sat. sodium tartrate solution (10 mL) was added to the resulting gel. The mixture was stirred at r.t. for 30 min, then the organic layer was extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were dried over anhydrous MgSO4 and concentrated in vacuo to give a separable mixture of diastereomers 2b and 3b, which was purified by flash chromatography (SiO2; EtOAc-PE, 8:2) to give 2b as a yellow solid (155 mg, 27.5%) and 3b as a pale-yellow oil (155 mg, 27.5%).
Compound 2b: ¹7,²0b R f  = 0.1 (EtOAc-PE, 8:2); mp 93-95 ˚C; [α]D ²0 +106 (c 1.1, CHCl3). IR (neat): 3017, 1495, 1454 cm. ¹H NMR (CDCl3, 400 MHz): δ = 7.43-7.20 (m, 10 H), 4.39 (d, J = 5.2 Hz, 1 H), 3.67 (d, J = 13.0 Hz, 1 H), 3.34 (d, J = 13.0 Hz, 1 H), 3.08 (m, 1 H), 2.96 (m, 1 H), 2.40 (m, 1 H), 1.94 (m, 1 H), 1.80-1.71 (m, 3 H). ¹³C NMR (CDCl3, 100 MHz): δ = 143.8 (s), 139.5 (s), 128.8 (d), 128.7 (d), 128.6 (d), 128.4 (d), 128.4 (d), 128.3 (d), 128.3 (d), 127.1 (d), 127.0 (d), 126.2 (d), 75.3 (d), 70.2 (d), 61.2 (t), 54.3 (t), 29.4 (t), 24.3 (t). MS: m/z (%) = 160 (100)[M - CHOHPh˙], 91 (71) [PhCH2 +].
Compound 3b: ¹7,²0b R f  = 0.2 (EtOAc-PE, 8:2); [α]D ²0 -54 (c 1, CHCl3). IR (neat): 3620, 2940, 2820, 1496, 1457 cm. ¹H NMR (CDCl3, 400 MHz): δ = 7.41-7.19 (m, 10 H), 4.89 (d, J = 3.1 Hz, 1 H), 4.18 (d, J = 12.7 Hz, 1 H), 3.46 (d, J = 12.7 Hz, 1 H), 3.05 (m, 1 H), 2.89 (m, 1 H), 2.33 (dd, J = 17, 8.1 Hz, 1 H), 1.73 (m, 1 H), 1.65-1.56 (m, 2 H), 1.32 (m, 1 H). ¹³C NMR (CDCl3, 100 MHz): δ = 141.5 (s), 139.1 (s), 128.8 (d), 128.6 (d), 128.4 (d), 128.3 (d), 128.1 (d), 127.6 (d), 127.2 (d), 127.0 (d), 126.8 (d), 125.5 (d), 70.2 (d), 69.2 (d), 58.3 (t), 54.7 (t), 24.0 (t), 23.2 (t). MS: m/z (%) = 160 (100)[M - CHOHPh˙], 91 (71) [PhCH2 +].

16

General procedure for the ring expansion of pyrrolidines to piperidines: Trifluoroacetic anhydride (3-4 equiv) was added to a stirred solution of N-alkyl pyrrolidine (1 equiv) in THF under argon at r.t. and Et3N (4-7 equiv) was added. The solution was stirred and heated at 100 ˚C for 3 h under microwave irradiation. The resulting solution was cooled to r.t. and a solution of aqueous 3.75 M NaOH was added. After stirring for 30 min, EtOAc was added and the two layers were separated. The aqueous layer was extracted with EtOAc and the combined organic layers were dried over anhydrous MgSO4 and evaporated under reduced pressure to give the crude product. Compound 4: Chromatography (SiO2; EtOAc-PE, 7:3), R f  = 0.33 (EtOAc-PE, 7:3); ee >99% determined by supercritical fluid chromatography on Daicel Chiralpak OD-H column (MeOH 5%, flow rate 5 mL/min, t = 3.94 min); [α]D ²0 -25 (c 1.15, CHCl3). IR (neat): 3588, 3016, 2946, 1493, 1454 cm. ¹H NMR (CDCl3, 400 MHz): δ = 7.51-7.19 (m, 10 H), 3.87 (d, J = 13.6 Hz, 1 H), 3.74 (m, 1 H), 3.34 (d, J = 1.7 Hz, 1 H), 3.0 (m, 1 H), 2.88 (d, J = 13.6 Hz, 1 H), 2.05-1.89 (m, 3 H), 1.61 (m, 1 H), 1.47 (m, 1 H). ¹³C NMR (CDCl3, 100 MHz): δ = 141.1 (s), 139.1 (s), 128.7 (d), 128.6 (d), 128.5 (d), 128.4 (d), 128.3 (d), 128.2 (d), 128.1 (d), 128.0 (d), 127.4 (d), 126.6 (d), 73.9 (d), 72.4 (d), 59.4 (t), 53.4 (t), 31.3 (t), 19.9 (t). MS: m/z (%) = 267 (3)[M], 266 (3), 222 (15), 210 (6), 194 (15), 177 (13), 176 (100) [M - PhCH2 ˙ ], 106 (10), 91 (52) [PhCH2 +].
Compound 5: ¹7,²0b Chromatography (SiO2; EtOAc-PE, 8:2), R f  = 0.2 (EtOAc-PE, 8:2); ee >99% determined by supercritical fluid chromatography on Daicel Chiralpak OD-H column (MeOH 5%, flow rate 5 mL/min, t = 4.14 min); mp 139-141 ˚C; [α]D ²0 +27 (c 1, CHCl3). IR (neat): 3588, 3016, 2946, 1493, 1454 cm. ¹H NMR (CDCl3, 400 MHz): δ = 7.55-7.14 (m, 10 H), 3.66 (d, J = 13.6 Hz, 1 H), 3.59 (m, 1 H), 2.91 (d, J = 8.6 Hz, 1 H), 2.89 (m, 1 H), 2.83 (d, J = 13.6 Hz, 1 H), 2.09 (m, 1 H), 1.93 (m, 1 H), 1.70-1.60 (m, 2 H), 1.38 (m, 1 H). ¹³C NMR (CDCl3, 100 MHz): δ = 141.1 (s), 139.6 (s), 128.8 (d), 128.7 (d), 128.6 (d), 128.2 (d), 128.1 (d), 127.9 (d), 127.8 (d), 127.6 (d), 126.9 (d), 126.7 (d), 76.0 (d), 73.9 (d), 59.3 (t), 52.4 (t), 32.5 (t), 23.3 (t). MS: m/z (%) = 267 (3)[M], 266 (3), 222 (15), 210 (6), 194 (15), 177 (13), 176 (100) [M - PhCH2 ˙ ], 106 (10), 91 (52) [PhCH2 +].