Synthesis 2009(14): 2467-2470  
DOI: 10.1055/s-0029-1216859
PSP
© Georg Thieme Verlag Stuttgart ˙ New York

Transition-Metal-Free Oxidative Homocoupling of Aryl, Alkenyl, and Alkynyl Grignard Reagents with TEMPO

Modhu Sudan Maji, Armido Studer*
Institute of Organic Chemistry, NRW Graduate School of Chemistry, Westfälische Wilhelms-University Münster, Corrensstr. 40, 48149 Münster, Germany
Fax: +49(251)8336523; e-Mail: [email protected];
Further Information

Publication History

Received 18 March 2009
Publication Date:
29 May 2009 (online)

Abstract

Oxidative homocoupling of aryl, alkenyl, and alkynyl Grignard reagents by using commercially available TEMPO as an organic oxidant is described. These coupling reactions occur highly efficiently without the presence of any transition metal.

    References

  • 1a Whitesides GM. Newirth TL. J. Org. Chem.  1975,  40:  3448 
  • 1b Nagashima T. Curran DP. Synlett  1996,  330 
  • 1c Dalko PI. Tetrahedron Lett.  1999,  40:  4035 
  • 1d For organoboron compounds, see: Schaffner A.-P. Renaud P. Eur. J. Org. Chem.  2004,  2291 
  • 1e Review: Ollivier C. Renaud P. Chem. Rev.  2001,  101:  3415 
  • For reviews on the use of TEMPO in synthesis, see:
  • 2a Vogler T. Studer A. Synthesis  2008,  2163 
  • 2b Studer A. Schulte T. Chem. Rec.  2005,  5:  27 
  • 2c Studer A. Chem. Soc. Rev.  2004,  33:  267 
  • 2d Studer A. Chem. Eur. J.  2001,  7:  1159 
  • 2e For TEMPO as an oxidant in Rh-catalyzed processes, see: Vogler T. Studer A. Org. Lett.  2008,  10:  129 
  • 2f See also: Vogler T. Studer A. Adv. Synth. Catal.  2008,  350:  1963 
  • 2g For TEMPO as an oxidant in Pd-catalyzed CH arylations, see: Kirchberg S. Vogler T. Studer A. Synlett  2008,  2841 
  • 2h For TEMPO as an oxidant in biomimetic aldehyde oxidations, see: Guin J. De Sarkar S. Grimme S. Studer A. Angew. Chem. Int. Ed.  2008,  47:  8727 ; Angew. Chem. 2008, 120, 8855
  • 3 Maji MS. Pfeifer T. Studer A. Angew. Chem. Int. Ed.  2008,  47:  9547 ; Angew. Chem. 2008, 120, 9690
  • 4 Hassan J. Sévignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev.  2002,  102:  1359 
  • 5 Krasovskiy A. Tishkov A. del Amo V. Mayr H. Knochel P. Angew. Chem. Int. Ed.  2006,  45:  5010 ; Angew. Chem. 2006, 118, 5132
  • 6 Watson SC. Eastham JF. J. Organomet. Chem.  1967,  9:  165 
  • 7a Knochel P. Dohle W. Gommermann N. Kneisel FF. Kopp F. Korn T. Sapountzis I. Vu VA. Angew. Chem. Int. Ed.  2003,  42:  4302 ; Angew. Chem. 2003, 115, 4438
  • 7b Ren H. Krasovskiy A. Knochel P. Org. Lett.  2004,  6:  4215 
  • 8 For compounds 2a-c, 2e-j, 2o, and 2p, see: Miyake Y. Wu M. Rahman MJ. Kuwatani Y. Iyoda M. J. Org. Chem.  2006,  71:  6110 
  • 9 For compound 2d, see: Li J.-H. Xie Y.-X. Yin D.-L. J. Org. Chem.  2003,  68:  9867 
  • 10 For compounds 2m and 2n, see: Nising CF. Schmid UK. Nieger M. Bräse S. J. Org. Chem.  2004,  69:  6830 
  • 11 For compound 2q, see: Zhang S. Zhang D. Liebeskind LS. J. Org. Chem.  1997,  62:  2312 
  • 12 For compounds 2r-t and 2x, see: Li J. Liang Y. Xie Y. J. Org. Chem.  2005,  70:  4393 
  • 13 For compound 2w, see: Blangetti M. Deagostino A. Rosso H. Prandi C. Zavattaro C. Venturello P. Eur. J. Org. Chem.  2007,  5867 
  • 14 For compound 2u, see: Alonso DA. Nájera C. Pacheco MC. Adv. Synth. Catal.  2003,  345:  1146 
  • 15 For compound 2v, see: Suzuki H. Aihara M. Yamamoto H. Takamoto Y. Ogawa T. Synthesis  1988,  236