Abstract
Poorly differentiated thyroid carcinoma (PDTC) is defined as a malignant follicular
cell derived neoplasm, both morphologically and biologically intermediate between
well differentiated and anaplastic thyroid carcinoma (ATC). In the present study we
investigated the expression levels of two distinct sets of miRNAs (‘set 1’: miRNA-146b,
−181b, −21, −221, −222, all shown to be significantly upregulated in papillary thyroid
carcinoma [PTC]; ‘set 2’: miRNA−30d, −125b, −26a, −30a−5p, and let7c, all downregulated
in ATC) in a series of 15 PDTC (including 3 mixed PDTC/PTC), 9 ‘pure’ PTC, and 9 ATC.
Compared to normal thyroid tissue all ‘set 1’ miRNAs were significantly upregulated
in PTC (p<0.001); in ATC 4/5 miRNAs were upregulated (p<0.001) whereas in PDTC the
expression levels of all 5 miRNAs did not differ significantly from normal thyroid.
All miRNAs of ‘set 2’ were significantly upregulated in PTC (p<0.004) and downregulated
in ATC (p<0.03); in PDTC only 3/5 were downregulated (p<0.011). All 10 miRNAs investigated
differed significantly (p<0.003) between PTC and PDTC. In the histologically differentiated
PTC compound of mixed PDTC/PTC cases, however, miRNA expression levels of all 10 miRNAs
investigated lacked significant difference from those found in the PDTC compound,
whereas 6/10 miRNAs differed significantly from ‘pure’ PTC. Our results indicate that
analysis of distinct sets of miRNAs represent useful tools to distinguish PDTC from
‘pure’ PTC. Additionally our findings suggest that lack of deregulation of some miRNAs
may select a subset of PTC prone to progression to PDTC.
Key words
miRNA - deregulation - poorly differentiated thyroid carcinoma - papillary thyroid
carcinoma - anaplastic thyroid carcinoma
References
- 1 DeLellis RA, Williams ED. Tumours of the Thyroid and Parathyroid. In: DeLellis RA,
Lloyd RV, Heitz PU, Eng C, eds.
World Health Organization Classification of Tumours, Pathology & Genetics, Tumours
of Endocrine Organs. Lyon: IARC Press 2004: 49-133
- 2
Pilotti S, Collini P, Mariani L, Placucci M, Bongarzone I, Vigneri P, Cipriani S,
Falcetta F, Miceli R, Pierotti MA, Rilke F.
Insular carcinoma: a distinct de novo entity among follicular carcinomas of the thyroid
gland.
Am J Surg Pathol.
1997;
21
1466-1473
- 3
Carcangiu ML, Zampi G, Rosai J.
Poorly differentiated (“insular”) thyroid carcinoma. A reinterpretation of Langhans’
“wuchernde Struma“.
Am J Surg Pathol.
1984;
8
655-668
- 4
Sakamoto A.
Definition of poorly differentiated carcinoma of the thyroid: the Japanese experience.
Endocr Pathol.
2004;
15
307-311
- 5
Volante M, Collini P, Nikiforov YE, Sakamoto A, Kakudo K, Katoh R, Lloyd RV, LiVolsi VA,
Papotti M, Sobrinho-Simoes M, Bussolati G, Rosai J.
Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform
diagnostic criteria and an algorithmic diagnostic approach.
Am J Surg Pathol.
2007;
31
1256-1264
- 6
Cowland JB, Hother C, Gronbaek K.
MicroRNAs and cancer.
APMIS.
2007;
115
1090-1106
- 7
Zhang B, Pan X, Cobb GP, Anderson TA.
microRNAs as oncogenes and tumor suppressors.
Dev Biol.
2007;
302
1-12
- 8
Zhang W, Dahlberg JE, Tam W.
MicroRNAs in tumorigenesis: a primer.
Am J Pathol.
2007;
171
728-738
- 9
Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M,
Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM.
Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14
in chronic lymphocytic leukemia.
Proc Natl Acad Sci USA.
2002;
99
15524-15529
- 10
Calin GA, Ferracin M, Cimmino A, Di LG, Shimizu M, Wojcik SE, Iorio MV, Visone R,
Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C,
Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM.
A MicroRNA signature associated with prognosis and progression in chronic lymphocytic
leukemia.
N Engl J Med.
2005;
353
1793-1801
- 11
He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K,
Suster S, Kloos RT, Croce CM, de la CA.
The role of microRNA genes in papillary thyroid carcinoma.
Proc Natl Acad Sci USA.
2005;
102
19075-19080
- 12
Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M,
Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I,
Calin GA, Querzoli P, Negrini M, Croce CM.
MicroRNA gene expression deregulation in human breast cancer.
Cancer Res.
2005;
65
7065-7070
- 13
Lu J, Getz G, Miska EA, varez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL,
Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR.
MicroRNA expression profiles classify human cancers.
Nature.
2005;
435
834-838
- 14
Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, Fedele V, Ginzinger D,
Getts R, Haqq C.
Optimized high-throughput microRNA expression profiling provides novel biomarker assessment
of clinical prostate and breast cancer biopsies.
Mol Cancer.
2006;
5
24
- 15
Michael MZ, O’ Connor SM, van Holst Pellekaan NG, Young GP, James RJ.
Reduced accumulation of specific microRNAs in colorectal neoplasia.
Mol Cancer Res.
2003;
1
882-891
- 16
Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K.
Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma
and non-tumorous tissues.
Oncogene.
2006;
25
2537-2545
- 17
Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G, Chiappetta G,
Liu CG, Santoro M, Negrini M, Croce CM, Fusco A.
MicroRNA deregulation in human thyroid papillary carcinomas.
Endocr Relat Cancer.
2006;
13
497-508
- 18
Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y,
Nagino M, Nimura Y, Mitsudomi T, Takahashi T.
Reduced expression of the let-7 microRNAs in human lung cancers in association with
shortened postoperative survival.
Cancer Res.
2004;
64
3753-3756
- 19
Visone R, Pallante P, Vecchione A, Cirombella R, Ferracin M, Ferraro A, Volinia S,
Coluzzi S, Leone V, Borbone E, Liu CG, Petrocca F, Troncone G, Calin GA, Scarpa A,
Colato C, Tallini G, Santoro M, Croce CM, Fusco A.
Specific microRNAs are downregulated in human thyroid anaplastic carcinomas.
Oncogene.
2007;
26
7590-7595
- 20
Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C,
Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC,
Croce CM.
A microRNA expression signature of human solid tumors defines cancer gene targets.
Proc Natl Acad Sci U S A.
2006;
103
2257-2261
- 21
Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE.
MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic
utility.
J Clin Endocrinol Metab.
2008;
93
1600-1608
- 22
Tetzlaff MT, Liu A, Xu X, Master SR, Baldwin DA, Tobias JW, LiVolsi VA, Baloch ZW.
Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular
goiter using formalin fixed paraffin embedded tissues.
Endocr Pathol.
2007;
18
163-173
- 23
Chen YT, Kitabayashi N, Zhou XK, Fahey III TJ, Scognamiglio T.
MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma.
Mod Pathol.
2008;
21
1139-1146
- 24
Lehmann U, Kreipe H.
Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded
biopsies.
Methods.
2001;
25
409-418
- 25
Specht K, Richter T, Muller U, Walch A, Werner M, Hofler H.
Quantitative gene expression analysis in microdissected archival formalin-fixed and
paraffin-embedded tumor tissue.
Am J Pathol.
2001;
158
419-429
- 26
Sheu SY, Schwertheim S, Worm K, Grabellus F, Schmid KW.
Diffuse sclerosing variant of papillary thyroid carcinoma: lack of BRAF mutation but
occurrence of RET/PTC rearrangements.
Mod Pathol.
2007;
20
779-787
- 27
Nikiforov YE, Nikiforova MN, Gnepp DR, Fagin JA.
Prevalence of mutations of ras and p53 in benign and malignant thyroid tumors from
children exposed to radiation after the Chernobyl nuclear accident.
Oncogene.
1996;
13
687-693
- 28
Livak KJ, Schmittgen TD.
Analysis of relative gene expression data using real-time quantitative PCR and the
2(-Delta Delta C(T)) Method.
Methods.
2001;
25
402-408
- 29
Sakamoto A, Kasai N, Sugano H.
Poorly differentiated carcinoma of the thyroid. A clinicopathologic entity for a high-risk
group of papillary and follicular carcinomas.
Cancer.
1983;
52
1849-1855
- 30
Hiltzik D, Carlson DL, Tuttle RM, Chuai S, Ishill N, Shaha A, Shah JP, Singh B, Ghossein RA.
Poorly differentiated thyroid carcinomas defined on the basis of mitosis and necrosis:
a clinicopathologic study of 58 patients.
Cancer.
2006;
106
1286-1295
- 31
Volante M, Landolfi S, Chiusa L, Palestini N, Motta M, Codegone A, Torchio B, Papotti MG.
Poorly differentiated carcinomas of the thyroid with trabecular, insular, and solid
patterns: a clinicopathologic study of 183 patients.
Cancer.
2004;
100
950-957
- 32
Sheu S, Grabellus F, Schwertheim S, Handke S, Worm K, Schmid KW.
Lack of correlation between BRAF V600E mutational stuatus and the expression profile
of a distinct set of miRNAs in papillary thyroid carcinoma.
Horm Metab Res.
2009;
41
- 33
Mayr B, Brabant G, Goretzki P, Ruschoff J, Dietmaier W, Dralle H.
ret/PTC-1, -2, and -3 oncogene rearrangements in human thyroid carcinomas: implications
for metastatic potential?.
J Clin Endocrinol Metab.
1997;
82
1306-1307
- 34
Soares P, Fonseca E, Wynford-Thomas D, Sobrinho-Simoes M.
Sporadic ret-rearranged papillary carcinoma of the thyroid: a subset of slow growing,
less aggressive thyroid neoplasms?.
J Pathol.
1998;
185
71-78
- 35
Tallini G, Santoro M, Helie M, Carlomagno F, Salvatore G, Chiappetta G, Carcangiu ML,
Fusco A.
RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking
evidence of progression to poorly differentiated or undifferentiated tumor phenotypes.
Clin Cancer Res.
1998;
4
287-294
- 36
Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC.
Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic
potential in breast cancer cells.
Oncogene.
2008;
27
5643-5647
- 37
Taganov KD, Boldin MP, Chang KJ, Baltimore D.
NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling
proteins of innate immune responses.
Proc Natl Acad Sci USA.
2006;
103
12481-12486
- 38
Waes C Van.
Nuclear factor-kappaB in development, prevention, and therapy of cancer.
Clin Cancer Res.
2007;
13
1076-1082
- 39
Mercurio F, Manning AM.
NF-kappaB as a primary regulator of the stress response.
Oncogene.
1999;
18
6163-6171
- 40
Visconti R, Cerutti J, Battista S, Fedele M, Trapasso F, Zeki K, Miano MP, de NF,
Casalino L, Curcio F, Santoro M, Fusco A.
Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires
NFkappaB p65 protein expression.
Oncogene.
1997;
15
1987-1994
- 41
Chiappetta G, Ferraro A, Vuttariello E, Monaco M, Galdiero F, De SV, Califano D, Pallante P,
Botti G, Pezzullo L, Pierantoni GM, Santoro M, Fusco A.
HMGA2 mRNA expression correlates with the malignant phenotype in human thyroid neoplasias.
Eur J Cancer.
2008;
44
1015-1021
- 42
Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, Zhu Z, Giannini R,
Salvatore G, Fusco A, Santoro M, Fagin JA, Nikiforov YE.
BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic
or poorly differentiated carcinomas arising from papillary carcinomas.
J Clin Endocrinol Metab.
2003;
88
5399-5404
- 43
Basolo F, Pisaturo F, Pollina LE, Fontanini G, Elisei R, Molinaro E, Iacconi P, Miccoli P,
Pacini F.
N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone
metastases and inverse correlation to thyroglobulin expression.
Thyroid.
2000;
10
19-23
- 44
Garcia-Rostan G, Zhao H, Camp RL, Pollan M, Herrero A, Pardo J, Wu R, Carcangiu ML,
Costa J, Tallini G.
ras mutations are associated with aggressive tumor phenotypes and poor prognosis in
thyroid cancer.
J Clin Oncol.
2003;
21
3226-3235
- 45
Motoi N, Sakamoto A, Yamochi T, Horiuchi H, Motoi T, Machinami R.
Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial
origin.
Pathol Res Pract.
2000;
196
1-7
- 46
Vitagliano D, Portella G, Troncone G, Francione A, Rossi C, Bruno A, Giorgini A, Coluzzi S,
Nappi TC, Rothstein JL, Pasquinelli R, Chiappetta G, Terracciano D, Macchia V, Melillo RM,
Fusco A, Santoro M.
Thyroid targeting of the N-ras(Gln61Lys) oncogene in transgenic mice results in follicular
tumors that progress to poorly differentiated carcinomas.
Oncogene.
2006;
25
5467-5474
- 47
Broecker-Preuss M, Sheu SY, Worm K, Feldkamp J, Witte J, Scherbaum WA, Mann K, Schmid KW,
Schott M.
Expression and mutation analysis of the tyrosine kinase c-kit in poorly differentiated
and anaplastic thyroid carcinoma.
Horm Metab Res.
2008;
40
685-691
- 48
Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW, Tallini G, Kroll TG,
Nikiforov YE.
RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence
for distinct molecular pathways in thyroid follicular carcinoma.
J Clin Endocrinol Metab.
2003;
88
2318-2326
- 49
Vasko V, Ferrand M, Di CJ, Carayon P, Henry JF, de MC.
Specific pattern of RAS oncogene mutations in follicular thyroid tumors.
J Clin Endocrinol Metab.
2003;
88
2745-2752
- 50
Zhu Z, Gandhi M, Nikiforova MN, FISCHER AH, Nikiforov YE.
Molecular profile and clinical-pathologic features of the follicular variant of papillary
thyroid carcinoma. An unusually high prevalence of ras mutations.
Am J Clin Pathol.
2003;
120
71-77
- 51
Benvenga S.
Update on thyroid cancer.
Horm Metab Res.
2008;
40
323-328
1 These authors contributed equally to this work.
Correspondence
K. W. SchmidMD, MRCPath
Institute of Pathology and Neuropathology
University Hospital of Essen
University of Duisburg-Essen
Hufelandstr. 55
45122 Essen
Germany
Phone: +49/201/723 28 90
Fax: +49/201/723 59 26
Email: kw.schmid@uk-essen.de