RSS-Feed abonnieren
DOI: 10.1055/s-0029-1215572
© Georg Thieme Verlag KG Stuttgart · New York
Modeling Thyroid Cancer in the Mouse
Publikationsverlauf
received 02.02.2009
accepted 03.03.2009
Publikationsdatum:
08. April 2009 (online)

Abstract
Thyroid carcinomas, the most common endocrine tumors in humans, have an increasing incidence in the U.S. and worldwide. There are four major types of thyroid cancers: papillary, follicular, anaplastic, and medullary carcinomas. In recent years, significant progress has been made in the identification of genetic alterations in thyroid carcinomas, particularly, papillary and medullary thyroid cancers. Mouse models of thyroid cancer are valuable tools in elucidating molecular genetic changes underlying thyroid carcinogenesis and in identifying potential molecular targets for therapeutic intervention. Representative mouse models of papillary, follicular, and medullary carcinomas are reviewed here with particular emphasis on those for follicular thyroid carcinomas. Challenges for further development in the modeling of thyroid cancer will also be discussed.
Key words
thyroid cancer - thyroid hormone - mouse models
References
- 1
Nikiforova MN, Nikiforov YE.
Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis.
Expert Rev Mol Diagn.
2008;
8
83-95
Reference Ris Wihthout Link
- 2
Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ.
Cancer statistics, 2008.
CA Cancer J Clin.
2008;
58
71-96
Reference Ris Wihthout Link
- 3
Lodish MB, Stratakis CA.
RET oncogene in MEN2, MEN2B, MTC and other forms of thyroid cancer.
Expert Rev Anticancer Ther.
2008;
8
625-632
Reference Ris Wihthout Link
- 4
Mauchamp J, Mirrione A, Alquier C, Andre F.
Follicle-like structure and polarized monolayer: role of the extracellular matrix
on thyroid cell organization in primary culture.
Biol Cell.
1998;
90
369-380
Reference Ris Wihthout Link
- 5
De Felice M, Di Lauro R.
Thyroid development and its disorders: genetics and molecular mechanisms.
Endocr Rev.
2004;
25
722-746
Reference Ris Wihthout Link
- 6
Lazzaro D, Price M, de Felice M, Di Lauro R.
The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis
and in restricted regions of the foetal brain.
Development.
1991;
113
1093-1104
Reference Ris Wihthout Link
- 7
Postiglione MP, Parlato R, Rodriguez-Mallon A, Rosica A, Mithbaokar P, Maresca M, Marians RC, Davies TF, Zannini MS, De Felice M, Di Lauro R.
Role of the thyroid-stimulating hormone receptor signaling in development and differentiation
of the thyroid gland.
Proc Natl Acad Sci USA.
2002;
99
15462-15467
Reference Ris Wihthout Link
- 8
Meunier D, Aubin J, Jeannotte L.
Perturbed thyroid morphology and transient hypothyroidism symptoms in Hoxa5 mutant
mice.
Dev Dyn.
2003;
227
367-378
Reference Ris Wihthout Link
- 9
Castellone MD, Santoro M.
Dysregulated RET signaling in thyroid cancer.
Endocrinol Metab Clin North Am.
2008;
37
363-374
, viii
Reference Ris Wihthout Link
- 10
Nikiforov YE.
RET/PTC rearrangement in thyroid tumors.
Endocr Pathol.
2002;
13
3-16
Reference Ris Wihthout Link
- 11
Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE.
Proximity of chromosomal loci that participate in radiation-induced rearrangements
in human cells.
Science.
2000;
290
138-141
Reference Ris Wihthout Link
- 12
Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, Pierotti MA, Della Porta G, Fusco A, Vecchio G.
PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected
in vivo in human thyroid papillary carcinomas.
Cell.
1990;
60
557-563
Reference Ris Wihthout Link
- 13
Bongarzone I, Butti MG, Coronelli S, Borrello MG, Santoro M, Mondellini P, Pilotti S, Fusco A, Della Porta G, Pierotti MA.
Frequent activation of ret protooncogene by fusion with a new activating gene in papillary
thyroid carcinomas.
Cancer Res.
1994;
54
2979-2985
Reference Ris Wihthout Link
- 14
Boice Jr JD.
Radiation-induced thyroid cancer – what’s new?.
J Natl Cancer Inst.
2005;
97
703-705
Reference Ris Wihthout Link
- 15
Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V, Drozdovitch V, Maceika E, Zvonova I, Vlassov O, Bouville A, Goulko G, Hoshi M, Abrosimov A, Anoshko J, Astakhova L, Chekin S, Demidchik E, Galanti R, Ito M, Korobova E, Lushnikov E, Maksioutov M, Masyakin V, Nerovnia A, Parshin V, Parshkov E, Piliptsevich N, Pinchera A, Polyakov S, Shabeka N, Suonio E, Tenet V, Tsyb A, Yamashita S, Williams D.
Risk of thyroid cancer after exposure to 131I in childhood.
J Natl Cancer Inst.
2005;
97
724-732
Reference Ris Wihthout Link
- 16
Klugbauer S, Lengfelder E, Demidchik EP, Rabes HM.
High prevalence of RET rearrangement in thyroid tumors of children from Belarus after
the Chernobyl reactor accident.
Oncogene.
1995;
11
2459-2467
Reference Ris Wihthout Link
- 17
Tallini G.
Molecular pathobiology of thyroid neoplasms.
Endocr Pathol.
2002;
13
271-288
Reference Ris Wihthout Link
- 18
Bongarzone I, Fugazzola L, Vigneri P, Mariani L, Mondellini P, Pacini F, Basolo F, Pinchera A, Pilotti S, Pierotti MA.
Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1
in papillary thyroid carcinoma.
J Clin Endocrinol Metab.
1996;
81
2006-2009
Reference Ris Wihthout Link
- 19
Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA.
High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive
activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma.
Cancer Res.
2003;
63
1454-1457
Reference Ris Wihthout Link
- 20
Namba H, Rubin SA, Fagin JA.
Point mutations of ras oncogenes are an early event in thyroid tumorigenesis.
Mol Endocrinol.
1990;
4
1474-1479
Reference Ris Wihthout Link
- 21
Benvenga S.
Update on thyroid cancer.
Horm Metab Res.
2008;
40
323-328
Reference Ris Wihthout Link
- 22
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA.
Mutations of the BRAF gene in human cancer.
Nature.
2002;
417
949-954
Reference Ris Wihthout Link
- 23
Ciampi R, Nikiforov YE.
RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis.
Endocrinology.
2007;
148
936-941
Reference Ris Wihthout Link
- 24
Saxena N, Lahiri SS, Hambarde S, Tripathi RP.
RAS: target for cancer therapy.
Cancer Invest.
2008;
26
948-955
Reference Ris Wihthout Link
- 25
Riesco-Eizaguirre G, Santisteban P.
New insights in thyroid follicular cell biology and its impact in thyroid cancer therapy.
Endocr Relat Cancer.
2007;
14
957-977
Reference Ris Wihthout Link
- 26
Quayle FJ, Moley JF.
Medullary thyroid carcinoma: including MEN 2A and MEN 2B syndromes.
J Surg Oncol.
2005;
89
122-129
Reference Ris Wihthout Link
- 27
Gimm O, Dralle H.
C-cell cancer – prevention and treatment.
Langenbecks Arch Surg.
1999;
384
16-23
Reference Ris Wihthout Link
- 28
Michiels FM, Chappuis S, Caillou B, Pasini A, Talbot M, Monier R, Lenoir GM, Feunteun J, Billaud M.
Development of medullary thyroid carcinoma in transgenic mice expressing the RET protooncogene
altered by a multiple endocrine neoplasia type 2A mutation.
Proc Natl Acad Sci USA.
1997;
94
3330-3335
Reference Ris Wihthout Link
- 29
Esapa CT, Johnson SJ, Kendall-Taylor P, Lennard TW, Harris PE.
Prevalence of Ras mutations in thyroid neoplasia.
Clin Endocrinol (Oxf).
1999;
50
529-535
Reference Ris Wihthout Link
- 30
Motoi N, Sakamoto A, Yamochi T, Horiuchi H, Motoi T, Machinami R.
Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial
origin.
Pathol Res Pract.
2000;
196
1-7
Reference Ris Wihthout Link
- 31
Suarez HG, du Villard JA, Severino M, Caillou B, Schlumberger M, Tubiana M, Parmentier C, Monier R.
Presence of mutations in all three ras genes in human thyroid tumors.
Oncogene.
1990;
5
565-570
Reference Ris Wihthout Link
- 32
Basolo F, Pisaturo F, Pollina LE, Fontanini G, Elisei R, Molinaro E, Iacconi P, Miccoli P, Pacini F.
N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone
metastases and inverse correlation to thyroglobulin expression.
Thyroid.
2000;
10
19-23
Reference Ris Wihthout Link
- 33
Saavedra HI, Knauf JA, Shirokawa JM, Wang J, Ouyang B, Elisei R, Stambrook PJ, Fagin JA.
The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway.
Oncogene.
2000;
19
3948-3954
Reference Ris Wihthout Link
- 34
Dwight T, Thoppe SR, Foukakis T, Lui WO, Wallin G, Hoog A, Frisk T, Larsson C, Zedenius J.
Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement
in follicular thyroid tumors.
J Clin Endocrinol Metab.
2003;
88
4440-4445
Reference Ris Wihthout Link
- 35
French CA, Alexander EK, Cibas ES, Nose V, Laguette J, Faquin W, Garber J, Moore Jr F, Fletcher JA, Larsen PR, Kroll TG.
Genetic and biological subgroups of low-stage follicular thyroid cancer.
Am J Pathol.
2003;
162
1053-1060
Reference Ris Wihthout Link
- 36
Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn 2nd GW, Tallini G, Kroll TG, Nikiforov YE.
RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence
for distinct molecular pathways in thyroid follicular carcinoma.
J Clin Endocrinol Metab.
2003;
88
2318-2326
Reference Ris Wihthout Link
- 37
Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA.
PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected].
Science.
2000;
289
1357-1360
Reference Ris Wihthout Link
- 38
Placzkowski KA, Reddi HV, Grebe SK, Eberhardt NL, McIver B.
The role of the PAX8/PPARgamma fusion oncogene in thyroid cancer.
PPAR Res.
2008;
, Oct 29 [Epub ahead of print]
Reference Ris Wihthout Link
- 39
Gandolfi PP, Frisina A, Raffa M, Renda F, Rocchetti O, Ruggeri C, Tombolini A.
The incidence of thyroid carcinoma in multinodular goiter: retrospective analysis.
Acta Biomed.
2004;
75
114-117
Reference Ris Wihthout Link
- 40
Lawal O, Agbakwuru A, Olayinka OS, Adelusola K.
Thyroid malignancy in endemic nodular goitres: prevalence, pattern and treatment.
Eur J Surg Oncol.
2001;
27
157-161
Reference Ris Wihthout Link
- 41
Rivas M, Santisteban P.
TSH-activated signaling pathways in thyroid tumorigenesis.
Mol Cell Endocrinol.
2003;
213
31-45
Reference Ris Wihthout Link
- 42
Ward JM, Ohshima M.
The role of iodine in carcinogenesis.
Adv Exp Med Biol.
1986;
206
529-542
Reference Ris Wihthout Link
- 43
Mack WJ, Preston-Martin S, Bernstein L, Qian D, Xiang M.
Reproductive and hormonal risk factors for thyroid cancer in Los Angeles County females.
Cancer Epidemiol Biomarkers Prev.
1999;
8
991-997
Reference Ris Wihthout Link
- 44
Rios A, Rodriguez JM, Canteras M, Galindo PJ, Balsalobre MD, Parrilla P.
Risk factors for malignancy in multinodular goitres.
Eur J Surg Oncol.
2004;
30
58-62
Reference Ris Wihthout Link
- 45
Truong T, Orsi L, Dubourdieu D, Rougier Y, Hemon D, Guenel P.
Role of goiter and of menstrual and reproductive factors in thyroid cancer: a population-based
case-control study in New Caledonia (South Pacific), a very high incidence area.
Am J Epidemiol.
2005;
161
1056-1065
Reference Ris Wihthout Link
- 46
Capen CC.
Overview of structural and functional lesions in endocrine organs of animals.
Toxicol Pathol.
2001;
29
8-33
Reference Ris Wihthout Link
- 47
Capen CC.
Mechanistic data and risk assessment of selected toxic end points of the thyroid gland.
Toxicol Pathol.
1997;
25
39-48
Reference Ris Wihthout Link
- 48
Ledent C, Denef JF, Cottecchia S, Lefkowitz R, Dumont J, Vassart G, Parmentier M.
Costimulation of adenylyl cyclase and phospholipase C by a mutant alpha 1B-adrenergic
receptor transgene promotes malignant transformation of thyroid follicular cells.
Endocrinology.
1997;
138
369-378
Reference Ris Wihthout Link
- 49
Ledent C, Marcotte A, Dumont JE, Vassart G, Parmentier M.
Differentiated carcinomas develop as a consequence of the thyroid specific expression
of a thyroglobulin-human papillomavirus type 16 E7 transgene.
Oncogene.
1995;
10
1789-1797
Reference Ris Wihthout Link
- 50
Ledent C, Dumont JE, Vassart G, Parmentier M.
Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia
and hyperthyroidism.
EMBO J.
1992;
11
537-542
Reference Ris Wihthout Link
- 51
Mazzaferri EL.
Management of a solitary thyroid nodule.
N Engl J Med.
1993;
328
553-559
Reference Ris Wihthout Link
- 52
Michiels FM, Caillou B, Talbot M, Dessarps-Freichey F, Maunoury MT, Schlumberger M, Mercken L, Monier R, Feunteun J.
Oncogenic potential of guanine nucleotide stimulatory factor alpha subunit in thyroid
glands of transgenic mice.
Proc Natl Acad Sci USA.
1994;
91
10488-10492
Reference Ris Wihthout Link
- 53
Zeiger MA, Saji M, Gusev Y, Westra WH, Takiyama Y, Dooley WC, Kohn LD, Levine MA.
Thyroid-specific expression of cholera toxin A1 subunit causes thyroid hyperplasia
and hyperthyroidism in transgenic mice.
Endocrinology.
1997;
138
3133-3140
Reference Ris Wihthout Link
- 54
Chevillard S, Ugolin N, Vielh P, Ory K, Levalois C, Elliott D, Clayman GL, El-Naggar AK.
Gene expression profiling of differentiated thyroid neoplasms: diagnostic and clinical
implications.
Clin Cancer Res.
2004;
10
6586-6597
Reference Ris Wihthout Link
- 55
Ying H, Suzuki H, Furumoto H, Walker R, Meltzer P, Willingham MC, Cheng SY.
Alterations in genomic profiles during tumor progression in a mouse model of follicular
thyroid carcinoma.
Carcinogenesis.
2003;
24
1467-1479
Reference Ris Wihthout Link
- 56
Kato Y, Ying H, Zhao L, Furuya F, Araki O, Willingham MC, Cheng SY.
PPARgamma insufficiency promotes follicular thyroid carcinogenesis via activation
of the nuclear factor-kappaB signaling pathway.
Oncogene.
2006;
25
2736-2747
Reference Ris Wihthout Link
- 57
Hosal SA, Apel RL, Freeman JL, Azadian A, Rosen IB, LiVolsi VA, Asa SL.
Immunohistochemical Localization of p53 in Human Thyroid Neoplasms: Correlation with
Biological Behavior.
Endocr Pathol.
1997;
8
21-28
Reference Ris Wihthout Link
- 58
Nikiforov YE.
Genetic alterations involved in the transition from well-differentiated to poorly
differentiated and anaplastic thyroid carcinomas.
Endocr Pathol.
2004;
15
319-327
Reference Ris Wihthout Link
- 59
Quiros RM, Ding HG, Gattuso P, Prinz RA, Xu X.
Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary
carcinomas due to BRAF and p53 mutations.
Cancer.
2005;
103
2261-2268
Reference Ris Wihthout Link
- 60
Garcia-Rostan G, Tallini G, Herrero A, D’Aquila TG, Carcangiu ML, Rimm DL.
Frequent mutation and nuclear localization of beta-catenin in anaplastic thyroid carcinoma.
Cancer Res.
1999;
59
1811-1815
Reference Ris Wihthout Link
- 61
Jhiang SM, Sagartz JE, Tong Q, Parker-Thornburg J, Capen CC, Cho JY, Xing S, Ledent C.
Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas.
Endocrinology.
1996;
137
375-378
Reference Ris Wihthout Link
- 62
Cho JY, Sagartz JE, Capen CC, Mazzaferri EL, Jhiang SM.
Early cellular abnormalities induced by RET/PTC1 oncogene in thyroid-targeted transgenic
mice.
Oncogene.
1999;
18
3659-3665
Reference Ris Wihthout Link
- 63
Santoro M, Chiappetta G, Cerrato A, Salvatore D, Zhang L, Manzo G, Picone A, Portella G, Santelli G, Vecchio G, Fusco A.
Development of thyroid papillary carcinomas secondary to tissue-specific expression
of the RET/PTC1 oncogene in transgenic mice.
Oncogene.
1996;
12
1821-1826
Reference Ris Wihthout Link
- 64
Sagartz JE, Jhiang SM, Tong Q, Capen CC.
Thyroid-stimulating hormone promotes growth of thyroid carcinomas in transgenic mice
with targeted expression of the ret/PTC1 oncogene.
Lab Invest.
1997;
76
307-318
Reference Ris Wihthout Link
- 65
La Perle KM, Jhiang SM, Capen CC.
Loss of p53 promotes anaplasia and local invasion in ret/PTC1-induced thyroid carcinomas.
Am J Pathol.
2000;
157
671-677
Reference Ris Wihthout Link
- 66
Powell Jr DJ, Russell J, Nibu K, Li G, Rhee E, Liao M, Goldstein M, Keane WM, Santoro M, Fusco A, Rothstein JL.
The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids.
Cancer Res.
1998;
58
5523-5528
Reference Ris Wihthout Link
- 67
Burniat A, Jin L, Detours V, Driessens N, Goffard JC, Santoro M, Rothstein J, Dumont JE, Miot F, Corvilain B.
Gene expression in RET/PTC3 and E7 transgenic mouse thyroids: RET/PTC3 but not E7
tumors are partial and transient models of human papillary thyroid cancers.
Endocrinology.
2008;
149
5107-5117
Reference Ris Wihthout Link
- 68
Jin L, Burniat A, Dumont JE, Miot F, Corvilain B, Franc B.
Human thyroid tumours, the puzzling lessons from E7 and RET/PTC3 transgenic mice.
Br J Cancer.
2008;
99
1874-1883
Reference Ris Wihthout Link
- 69
Knauf JA, Ma X, Smith EP, Zhang L, Mitsutake N, Liao XH, Refetoff S, Nikiforov YE, Fagin JA.
Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary
thyroid cancers that undergo dedifferentiation.
Cancer Res.
2005;
65
4238-4245
Reference Ris Wihthout Link
- 70
Xing M.
BRAF mutation in thyroid cancer.
Endocr Relat Cancer.
2005;
12
245-262
Reference Ris Wihthout Link
- 71
Russell JP, Powell DJ, Cunnane M, Greco A, Portella G, Santoro M, Fusco A, Rothstein JL.
The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium.
Oncogene.
2000;
19
5729-5735
Reference Ris Wihthout Link
- 72
Feunteun J, Michiels F, Rochefort P, Caillou B, Talbot M, Fournes B, Mercken L, Schlumberger M, Monier R.
Targeted oncogenesis in the thyroid of transgenic mice.
Horm Res.
1997;
47
137-139
Reference Ris Wihthout Link
- 73
Rochefort P, Caillou B, Michiels FM, Ledent C, Talbot M, Schlumberger M, Lavelle F, Monier R, Feunteun J.
Thyroid pathologies in transgenic mice expressing a human activated Ras gene driven
by a thyroglobulin promoter.
Oncogene.
1996;
12
111-118
Reference Ris Wihthout Link
- 74
Vitagliano D, Portella G, Troncone G, Francione A, Rossi C, Bruno A, Giorgini A, Coluzzi S, Nappi TC, Rothstein JL, Pasquinelli R, Chiappetta G, Terracciano D, Macchia V, Melillo RM, Fusco A, Santoro M.
Thyroid targeting of the N-ras(Gln61Lys) oncogene in transgenic mice results in follicular
tumors that progress to poorly differentiated carcinomas.
Oncogene.
2006;
25
5467-5474
Reference Ris Wihthout Link
- 75
Coppee F, Gerard AC, Denef JF, Ledent C, Vassart G, Dumont JE, Parmentier M.
Early occurrence of metastatic differentiated thyroid carcinomas in transgenic mice
expressing the A2a adenosine receptor gene and the human papillomavirus type 16 E7
oncogene.
Oncogene.
1996;
13
1471-1482
Reference Ris Wihthout Link
- 76
Santelli G, de Franciscis V, Portella G, Chiappetta G, D’Alessio A, Califano D, Rosati R, Mineo A, Monaco C, Manzo G, Pozzi L, Vecchio G.
Production of transgenic mice expressing the Ki-ras oncogene under the control of
a thyroglobulin promoter.
Cancer Res.
1993;
53
5523-5527
Reference Ris Wihthout Link
- 77
Ribeiro-Neto F, Leon A, Urbani-Brocard J, Lou L, Nyska A, Altschuler DL.
cAMP-dependent oncogenic action of Rap1b in the thyroid gland.
J Biol Chem.
2004;
279
46868-46875
Reference Ris Wihthout Link
- 78
Yen PM.
Molecular basis of resistance to thyroid hormone.
Trends Endocrinol Metab.
2003;
14
327-333
Reference Ris Wihthout Link
- 79
Ono S, Schwartz ID, Mueller OT, Root AW, Usala SJ, Bercu BB.
Homozygosity for a dominant negative thyroid hormone receptor gene responsible for
generalized resistance to thyroid hormone.
J Clin Endocrinol Metab.
1991;
73
990-994
Reference Ris Wihthout Link
- 80
Kaneshige M, Kaneshige K, Zhu X, Dace A, Garrett L, Carter TA, Kazlauskaite R, Pankratz DG, Wynshaw-Boris A, Refetoff S, Weintraub B, Willingham MC, Barlow C, Cheng S.
Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired
growth and resistance to thyroid hormone.
Proc Natl Acad Sci USA.
2000;
97
13209-13214
Reference Ris Wihthout Link
- 81
Parrilla R, Mixson AJ, McPherson JA, MacClaskey JH, Weintraub BD.
Characterization of seven novel mutations of the c-erbA beta gene in unrelated kindreds
with generalized thyroid hormone resistance. Evidence for two “hot spot” regions of
the ligand binding domain.
J Clin Invest.
1991;
88
2123-2130
Reference Ris Wihthout Link
- 82
Suzuki H, Willingham MC, Cheng SY.
Mice with a mutation in the thyroid hormone receptor beta gene spontaneously develop
thyroid carcinoma: a mouse model of thyroid carcinogenesis.
Thyroid.
2002;
12
963-969
Reference Ris Wihthout Link
- 83
Ying H, Suzuki H, Zhao L, Willingham MC, Meltzer P, Cheng SY.
Mutant thyroid hormone receptor beta represses the expression and transcriptional
activity of peroxisome proliferator-activated receptor gamma during thyroid carcinogenesis.
Cancer Res.
2003;
63
5274-5280
Reference Ris Wihthout Link
- 84
Kim CS, Vasko VV, Kato Y, Kruhlak M, Saji M, Cheng SY, Ringel MD.
AKT activation promotes metastasis in a mouse model of follicular thyroid carcinoma.
Endocrinology.
2005;
146
4456-4463
Reference Ris Wihthout Link
- 85
Furuya F, Guigon CJ, Zhao L, Lu C, Hanover JA, Cheng SY.
Nuclear receptor corepressor is a novel regulator of phosphatidylinositol 3-kinase
signaling.
Mol Cell Biol.
2007;
27
6116-6126
Reference Ris Wihthout Link
- 86
Furuya F, Hanover JA, Cheng SY.
Activation of phosphatidylinositol 3-kinase signaling by a mutant thyroid hormone
beta receptor.
Proc Natl Acad Sci USA.
2006;
103
1780-1785
Reference Ris Wihthout Link
- 87
Furuya F, Lu C, Willingham MC, Cheng SY.
Inhibition of phosphatidylinositol 3-kinase delays tumor progression and blocks metastatic
spread in a mouse model of thyroid cancer.
Carcinogenesis.
2007;
28
2451-2458
Reference Ris Wihthout Link
- 88
Ying H, Furuya F, Zhao L, Araki O, West BL, Hanover JA, Willingham MC, Cheng SY.
Aberrant accumulation of PTTG1 induced by a mutated thyroid hormone beta receptor
inhibits mitotic progression.
J Clin Invest.
2006;
116
2972-2984
Reference Ris Wihthout Link
- 89
Zimonjic DB, Kato Y, Ying H, Popescu NC, Cheng SY.
Chromosomal aberrations in cell lines derived from thyroid tumors spontaneously developed
in TRbetaPV/PV mice.
Cancer Genet Cytogenet.
2005;
161
104-109
Reference Ris Wihthout Link
- 90
Kim CS, Ying H, Willingham MC, Cheng SY.
The pituitary tumor-transforming gene promotes angiogenesis in a mouse model of follicular
thyroid cancer.
Carcinogenesis.
2007;
28
932-939
Reference Ris Wihthout Link
- 91
Kim CS, Furuya F, Ying H, Kato Y, Hanover JA, Cheng SY.
Gelsolin: a novel thyroid hormone receptor-beta interacting protein that modulates
tumor progression in a mouse model of follicular thyroid cancer.
Endocrinology.
2007;
148
1306-1312
Reference Ris Wihthout Link
- 92
Torres-Arzayus MI, Font de Mora J, Yuan J, Vazquez F, Bronson R, Rue M, Sellers WR, Brown M.
High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define
AIB1 as an oncogene.
Cancer Cell.
2004;
6
263-274
Reference Ris Wihthout Link
- 93
Ying H, Willingham MC, Cheng SY.
The steroid receptor coactivator-3 is a tumor promoter in a mouse model of thyroid
cancer.
Oncogene.
2008;
27
823-830
Reference Ris Wihthout Link
- 94
Furuya F, Ying H, Zhao L, Cheng SY.
Novel functions of thyroid hormone receptor mutants: beyond nucleus-initiated transcription.
Steroids.
2007;
72
171-179
Reference Ris Wihthout Link
- 95
Guigon CJ, Zhao L, Lu C, Willingham MC, Cheng SY.
Regulation of beta-catenin by a novel nongenomic action of thyroid hormone beta receptor.
Mol Cell Biol.
2008;
28
4598-4608
Reference Ris Wihthout Link
- 96
Kato Y, Ying H, Willingham MC, Cheng SY.
A tumor suppressor role for thyroid hormone beta receptor in a mouse model of thyroid
carcinogenesis.
Endocrinology.
2004;
145
4430-4438
Reference Ris Wihthout Link
- 97
Ledent C, Dumont J, Vassart G, Parmentier M.
Thyroid adenocarcinomas secondary to tissue-specific expression of simian virus-40
large T-antigen in transgenic mice.
Endocrinology.
1991;
129
1391-1401
Reference Ris Wihthout Link
- 98
Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E, Love DR, Mole SE, Moore JK, Papi L, Ponder MA, Telenius H, Tunnacliffe A, Ponder BAJ.
Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type
2A.
Nature.
1993;
363
458-460
Reference Ris Wihthout Link
- 99
Harvey M, Vogel H, Lee EY, Bradley A, Donehower LA.
Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin.
Cancer Res.
1995;
55
1146-1151
Reference Ris Wihthout Link
- 100
Ziebold U, Lee EY, Bronson RT, Lees JA.
E2F3 loss has opposing effects on different pRB-deficient tumors, resulting in suppression
of pituitary tumors but metastasis of medullary thyroid carcinomas.
Mol Cell Biol.
2003;
23
6542-6552
Reference Ris Wihthout Link
- 101
Coxon AB, Ward JM, Geradts J, Otterson GA, Zajac-Kaye M, Kaye FJ.
RET cooperates with RB/p53 inactivation in a somatic multi-step model for murine thyroid
cancer.
Oncogene.
1998;
17
1625-1628
Reference Ris Wihthout Link
- 102
Nakagawa T, Mabry M, de Bustros A, Ihle JN, Nelkin BD, Baylin SB.
Introduction of v-Ha-ras oncogene induces differentiation of cultured human medullary
thyroid carcinoma cells.
Proc Natl Acad Sci USA.
1987;
84
5923-5927
Reference Ris Wihthout Link
- 103
Johnston D, Hatzis D, Sunday ME.
Expression of v-Ha-ras driven by the calcitonin/calcitonin gene-related peptide promoter:
a novel transgenic murine model for medullary thyroid carcinoma.
Oncogene.
1998;
16
167-177
Reference Ris Wihthout Link
- 104
Cranston AN, Ponder BA.
Modulation of medullary thyroid carcinoma penetrance suggests the presence of modifier
genes in a RET transgenic mouse model.
Cancer Res.
2003;
63
4777-4780
Reference Ris Wihthout Link
- 105
Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, Tuveson DA.
Analysis of lung tumor initiation and progression using conditional expression of
oncogenic K-ras.
Genes Dev.
2001;
15
3243-3248
Reference Ris Wihthout Link
- 106
Lakso M, Sauer B, Mosinger Jr B, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H.
Targeted oncogene activation by site-specific recombination in transgenic mice.
Proc Natl Acad Sci USA.
1992;
89
6232-6236
Reference Ris Wihthout Link
- 107
Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T.
Somatic activation of the K-ras oncogene causes early onset lung cancer in mice.
Nature.
2001;
410
1111-1116
Reference Ris Wihthout Link
- 108
Smith AJ, De Sousa MA, Kwabi-Addo B, Heppell-Parton A, Impey H, Rabbitts P.
A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP
recombination.
Nat Genet.
1995;
9
376-385
Reference Ris Wihthout Link
- 109
Buchholz F, Refaeli Y, Trumpp A, Bishop JM.
Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated
recombination in the mouse.
EMBO Rep.
2000;
1
133-139
Reference Ris Wihthout Link
- 110
Collins EC, Pannell R, Simpson EM, Forster A, Rabbitts TH.
Inter-chromosomal recombination of Mll and Af9 genes mediated by cre-loxP in mouse
development.
EMBO Rep.
2000;
1
127-132
Reference Ris Wihthout Link
- 111
Sheils O.
Molecular classification and biomarker discovery in papillary thyroid carcinoma.
Expert Rev Mol Diagn.
2005;
5
927-946
Reference Ris Wihthout Link
Correspondence
S-y. Cheng
Laboratory of Molecular Biology
National Cancer Institute
37 Convent Dr, Room 5128
Bethesda
20892-4264 MD
USA
Telefon: +1/301/496 42 80
Fax: +1/301/402 13 44
eMail: chengs@mail.nih.gov
