Deutsche Zeitschrift für Onkologie 2009; 41(2): 65-69
DOI: 10.1055/s-0029-1213540
Forschung

© Karl F. Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Anwendung von Genexpressionssignaturen beim Mammakarzinom

Georg Kunz
Further Information

Publication History

Publication Date:
29 June 2009 (online)

Zusammenfassung

In Erweiterung zu den klinischen und histopathologischen Faktoren konnten die Genexpressionsanalysen des Mammakarzinoms mit teilweise sehr unterschiedlichen Signaturen unser Wissen um die Prognoseabschätzung dieser heterogenen Erkrankung deutlich erweitern. Obwohl die Ergebnisse prospektiv randomisierter Studien noch nicht vorliegen, sind die bisher vorliegenden Daten zur Validierung der Gensignaturen schon sehr beeindruckend. So hat das Expertenpanel der St.-Gallen-Brustkrebskonferenz von 2009 mehrheitlich die Verwendung der Gensignaturen unter bestimmten Umständen empfohlen. Derzeit sollten die Entscheidungen zur weiteren Therapieempfehlung einer an Brustkrebs erkrankten Frau aber weiterhin auf der sorgfältigen und umfassenden Evaluation der klinischen und histopathologischen Daten beruhen. Aber innerhalb von zwei international durchgeführten wissenschaftlichen Studien (für Europa die MINDACT-Studie) kann die Genexpressionsanalyse betroffenen Patientinnen angeboten werden.

Summary

The gene signatures in women with breast cancer have provided substantial means for a better understanding of the heterogeneity of the disease and the stratification of the subsequent adjuvant therapy. However, recommendations for the postoperative therapy in breast cancer should be based on the thorough evaluation and discussion of the traditional clinical and histo-pathological data. Nevertheless, the use of gene signatures in breast cancer was recommended by the expert panel of the St. Gallen breast cancer meeting in 2009, but under defined circumstances. Actually, women should be included in internationally performed studies that test the gene signatures within prospective and randomized studies (for Europe the MINDACT trial)

Literatur

  • 01 Albain K, Barlow W, Shak S. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal, node-positive, ER-positive breast cancer (S8814, INT0100).  Breast Cancer Res Treat. 2007;  206 (S10)
  • 02 Ayers M, Symmans W F, Stec J. et al . Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer.  J Clin Oncol. 2004;  22 2284-93
  • 03 Bonnefoi H, Potti A, Delorenzi M. et al . Validation of gene signatures that predict the response of breast cancer to neo-adjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial.  Lancet Oncol. 2007;  8 1071-8
  • 04 Bueno-de-Mesquita J M, van Harten W H, Retel V P. et al . Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer.  J Natl Cancer Inst. 2006;  98 1183-92
  • 05 Buyse M, Loi S, van't Veer L. et al . Validation and Clinical Utility of a 70-Gene Prognostic Signature for Women With Node-Negative Breast Cancer.  Natl Cancer Inst. 2006;  98 (17) 1183-91
  • 06 Desmedt C, Haibe-Kains B, Wirapati P. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes.  Clin Cancer Res. 2008;  14 5158-65
  • 07 Fan C, Oh D S, Wessels L. et al . Concordance among gene-expression-based predictors for breast cancer.  N Engl J Med. 2006;  35 560-9
  • 08 Glinsky G V. Stem cell origin of death-from-cancer phenotypes of human prostate and breast cancers.  Stem Cell Rev. 2007;  3 79-93
  • 09 Glinsky G V. „Stemness” genomics law governs clinical behavior of human cancer: implications for decision making in disease management.  J Clin Oncol. 2008;  26 2846-53
  • 10 Habel L A, Shak S, Jacobs M K. A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients.  Breast Cancer Res. 2006;  8 R25
  • 11 Haibe-Kains B, Desmedt C, Piette F. et al . Comparison of prognostic gene expression signatures for breast cancer.  BMC Genomics. 2008;  9 394
  • 12 Haibe-Kains B, Desmedt C, Sotiriou C, Bontempi G. A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all?.  Bioinformatics. 2008;  24 2200-8
  • 13 Kakarala M, Wicha M S. Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy.  J Clin Oncol. 2008;  26 2813-20
  • 14 Kunz G, Glas A, Snoo F. de, Simon I. Use of the genomic test MammaPrint in daily clinical practice to assist in risk stratification of young breast cancer patients.  The Breast. 2009;  18 (S 1) 0075
  • 15 Kunz G, Dimpfl T, Jackisch C. et al . Comparison of MammaPrint and TargetPrint results with clinical parameters in german patients (PATH) with early stage breast cancer.  The Breast. 2009;  18 (S 1) 0063
  • 16 Loi S, Haibe-Kains B, Desmedt C. et al . Defintion of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade.  J Clin Oncol. 2007;  25 1239-46
  • 17 Ma X J, Wang Z, Ryan P D. et al . A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen.  Cancer Cell. 2004;  5 607-15
  • 18 Mook S, Schmidt M K, Viale G. et al . The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1-3 positive lymph nodes in an independent validation study.  Breast Cancer Res Treat. 2008; 
  • 19 Paik S, Shak S, Tang G. et al . A multi-gene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer.  N Engl J Med. 2004;  351 2817-26
  • 20 Paik S, Tang G, Shak S. et al . Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer.  J Clin Oncol. 2006;  24 3726-34
  • 21 Perou C M, Sorlie T, Eisen M B. et al . Molecular portraits of human breast tumours.  Nature. 2000;  406 747-52
  • 22 Potti A, Dressman H K, Bild A. et al . Genomic signatures to guide the use of chemotherapeutics.  Nat Med. 2006;  12 1294-300
  • 23 Sorlie T, Tibsshirani R, Parker J. et al . Repeated observation of breast tumor subtypes in independant gene expression data.  Proc Natl Acad Sci USA. 2003;  100 8418-23
  • 24 Sotiriou C, Neo S Y, McShane L M. et al . Breast cancer classification and prognosis based on gene expression profiles from a populaVoskuil DW, tion-based study.  Proc Natl Acad Sci USA. 2003;  100 10393-8
  • 25 Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer.  N Engl J Med. 2009;  360 790-800
  • 26 Staunton J E, Slonim D K, Coller H A. et al . Chemosensitivity prediction by transcriptional profiling.  Proc Natl Acad Sci USA. 2001;  98 10787-92
  • 27 Straver M E, Glas A M, Hannemann J. et al . The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer.  Breast Cancer Res Treat. 2009;  13
  • 28 van de Vijver M J, He Y D, van’t Veer. et al . A gene-expression signature as a predictor of survival in breast cancer.  N Engl J Med. 2002;  347. 1999-2009
  • 29 van’t Veer L J, Dai H, van de Vijer M J. et al . Gene expression profiling predicts clinical outcome of breast cancer.  Nature. 2002;  415 530-6
  • 30 Wirapati P, Sotiriou C, Kunkel S. et al . Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures.  Breast Cancer Res. 2008;  10 R65

Korrespondenzadresse

Priv.-Doz. Dr. med. Georg Kunz

Chefarzt der Frauenklinik mit
zertifiziertem Brustzentrum
St.-Johannes-Hospital Dortmund

Johannesstrasse 9–17

44137 Dortmund

Email: georg.kunz@joho-dortmund.de

    >