Cent Eur Neurosurg 2009; 70(4): 187-194
DOI: 10.1055/s-0029-1202357
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Effects of GYKI 52466 on Early Vasospasm in Rats

Wirkung von GYKI 52466 auf den frühen Vasospasmus bei der RatteA. Colak1 , O. Soy2 , A. Karaoglan1 , O. Akdemir2 , S. Kokturk3 , A. Sagmanligil2 , M. Tasyurekli4
  • 1Department of Neurosurgery, School of Medicine, Maltepe University, Istanbul, Turkey
  • 2Department of Neurosurgery, Taksim Education and Research Hospital, Istanbul, Turkey
  • 3Stem Cell and Gene Therapy Reasearch and Application Center, Kocaeli University, Kocaeli, Turkey
  • 4Cerrahpaşa School of Medicine, Histology and Embryology, Istanbul University, Istanbul, Turkey
Further Information

Publication History

Publication Date:
22 October 2009 (online)

Abstract

Objective: The pathogenesis and treatment of cerebral vasospasm (CV) after subarachnoid hemorrhage (SAH) remains a matter of discussion. The authors investigated the efficacy of GYKI 52466, a 2,3-benzodiazepine that is a selective and potent α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) receptor antagonist, in a rat femoral artery vasospasm model.

Methods: Twenty-seven Wistar albino rats were used in this study. The animals were divided into 3 groups of 9 animals each: sham-operated control (group 1), vasospasm group (group 2), and vasospasm-plus-treatment group (group 3). In groups 2 and 3, autologous blood (0.1 mL) was applied to a 1-cm segment of the femoral artery, which was then wrapped with a silicone cuff. One minute after blood application, the rats in group 3 received an intraperitoneal injection of 15 mg/kg GYKI 52466 every 12 h for 24 h. Responses to blood application and treatment were evaluated with light and electron microscopy examinations of femoral artery specimens at 72 h.

Results: On light microscope examination, the mean diameters of the arterial lumens in groups 1, 2, and 3 were 514.47±15.3, 317.63±12.1, and 503.91±9.6 μm, respectively. At 24 h, the mean arterial wall thickness in group 1 was 77.69±4.2 μm. This mean thickness in group 2 increased to 164.82±9.1 μm. After GYKI treatment in group 3, the mean arterial wall thickness measured 95.37±5.3 μm. In group 2 rats, electron microscopy demonstrated various changes including marked luminal narrowing and increased wall thickness in the femoral arterial wall. The most striking finding were the degenerative changes in the endothelium, which presented as a corrugated appearance of the internal elastic lamina. Rats in group 3 had endothelia that were slightly constricted and smooth muscle cells that were relaxed; changes in the vessel wall and internal elastic lamina were less prominent in these rats than in the rats of group 2.

Conclusions: The results of the present study suggest that GYKI 52466 inhibited AMPA receptors and induced relaxation of smooth muscle cells in the wall of the femoral artery in a rat model. This substance may be a protective and therapeutic agent in the treatment of cerebral vasospasm.

Zusammenfassung

Ziel: Die Pathogenese und die Behandlung des zerebralen Vasospasmus (CV) nach der Subarachnoidalblutung (SAB) bleibt Gegenstand der Diskussion. Die Autoren untersuchten die Wirksamkeit von GYKI 52466, ein 2,3-Benzodiazepin, welches ein selektiver und potenter α-Amino-3-Hydroxy-5-Methylisoxazol-4-Proprionsäure (AMPA) Rezeptorantagonist ist, im Rattenmodell des Vasospasmus der Femoralarterie.

Methoden: 27 Wistar Albinoratten wurden in dieser Studie eingesetzt. Die Tiere wurden in 3 Gruppen von jeweils 9 Tieren eingeteilt: Kontroll-operierte Tiere (Gruppe 1), Vasospasmus-Gruppe (Gruppe 2) und Vasospasmus-Behandlungsgruppe (Gruppe 3). In den Gruppen 2 und 3 wurde autologes Blut (0,1 ml) auf ein 1 cm-Segment der Femoralarterie aufgebracht, welche anschließend in eine Silikonhülse eingewickelt wurde. Eine Minute nach der Blutanwendung erhielten die Ratten der Gruppe 3 eine intraperitoneale Injektion von 15 mg/kg GYKI 52466 alle 12 Stunden für 24 Stunden. Die Reaktionen auf die Blutanwendung und die Behandlung wurden mit licht- und elektronenmikroskopischen Untersuchungen des Femoralarterien-Segments nach 72 Stunden evaluiert.

Ergebnisse: Bei lichtmikroskopischer Untersuchung betrugen die mittleren Durchmesser des Arterienlumens in den Gruppen 1, 2 und 3 jeweils 514,47±15,3, 317,63±12,1 und 503,91±9,6 μm. Nach 24 Stunden betrug die mittlere Wandstärke in Gruppe 1 77,69±4,2 μm. Die mittlere Wandstärke in Gruppe 2 stieg an auf 164,82±9,1 μm. Nach der GYKI-Behandlung in Gruppe 3 betrug die mittlere Wandstärke 95,37±5,3 μm. Bei Ratten der Gruppe 2 ergab die elektronenmikroskopische Untersuchung verschiedene Ver-änderungen, einschließlich deutlicher Lumeneinengung und verstärkter Wanddicke in der Femoralarterienwand. Am bemerkenswertesten waren die degenerativen Veränderungen im Endothel, die sich als wellenförmige Erscheinungen der Lamina elastica interna darstellten. Ratten der Gruppe 3 hatten Endothelien, die leicht zusammengezogen waren und glatte Muskelzellen, die entspannt erschienen. Veränderungen der Gefäßwand und der Lamina elastica interna waren weniger deutlich in diesen Ratten im Vergleich zu den Ratten der Gruppe 2 (Vasospasmus-Gruppe).

Schlussfolgerungen: Diese Ergebnisse zeigen, dass GYKI 52466 die AMPA Rezeptoren hemmt und eine Relaxation der glatten Muskelzellen in der Wand der Femoralarterie im Rattenmodell erzeugt. Diese Substanz könnte ein protektiver oder therapeutischer Wirkstoff bei zerebralem Vasospasmus sein.

References

  • 1 Agrawal SK, Fehlings MG. Role of NMDA and non-NMDA ionotropic glutamate receptors in traumatic spinal cord axonal injury.  J Neurosci. 1997;  17 1055-1063
  • 2 Berkman MZ, Iplikcioglu AC, Berkman MK. et al . The effect of tizanidine on chronic vasospasm in rats.  Acta Neurochir (Wien). 2000;  142 1047-1054
  • 3 Brand-Schieber E, Lowery SL, Werner P. Select ionotropic glutamate AMPA/kainate receptors are expressed at the astrocyte-vessel interface.  Brain Res. 2004;  1007 178-182
  • 4 Brodal P. Nervous System Structure and Function. 2nd ed. New York: Oxford University Press 1998
  • 5 Burnashev N, Khodorova A, Jonas P. et al . Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells.  Science. 1992;  256 1566-1570
  • 6 Carlton SM, Chung K, Ding Z. et al . Glutamate receptors on postganglionic sympathetic axons.  Neuroscience. 1998;  83 601-605
  • 7 Chimirri A, Gitto R, Zappala M. AMPA receptor antagonists.  Exp Opin Ther Patents. 1999;  9 557-570
  • 8 Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death.  Annu Rev Neurosci. 1990;  13 171-182
  • 9 Colak A, Soy O, Uzun H. et al . Neuroprotective effects of GYKI 52466 on experimental spinal cord injury in rats.  J Neurosurg Spine. 2003;  98 275-281
  • 10 Collingridge GL, Lester RA. Excitatory amino acid receptors in the vertebrate central nervous system.  Pharmacol Rev. 1989;  41 143-210
  • 11 Coyle JT. Neurotoxic action of kainic acid.  J Neurochem. 1983;  41 1-11
  • 12 De Keyser J, Ebinger G, De Backer JP. et al . Subtypes of adrenergic and dopaminergic receptors in bovine cerebral blood vessels.  Neurosci Lett. 1988;  85 272-276
  • 13 Delgado TJ, Brismar J, Svendgaard NA. Subarachnoid haemorrhage in the rat: angiography and fluorescence microscopy of the major cerebral arteries.  Stroke. 1985;  6 595-602
  • 14 de Sarro G, Chimirri A, De Sarro A. et al . GYKI 52466 and related 2,3-benzodiazepines as anticonvulsant agents in DBA/2 mice.  Eur J Pharmacol. 1995;  294 411-422
  • 15 Donevan SD, Rogawski MA. GYKI 52466, a 2,3-benzodiazepine, is a highly selective, noncompetitive antagonist of AMPA/kainate receptor responses.  Neuron. 1993;  10 51-59
  • 16 Fergus A, Lee KS. Regulation of cerebral microvessels by glutamatergic mechanisms.  Brain Res. 1997;  754 35-45
  • 17 Fiumana E, Parfenova H, Jaggar JH. et al . Carbon monoxide mediates vasodilator effects of glutamate in isolated pressurized cerebral arterioles of newborn pigs.  Am J Physiol Heart Circ Physiol. 2003;  284 H1073-H1079
  • 18 Fujiwara M, Tsukahara T, Taniguchi T. Alpha-adrenoceptors in human and animal cerebral arteries: alterations after sympathetic denervation and subarachnoid hemorrhage.  Trends Pharmacol Sci. 1989;  10 329-332
  • 19 Gaetani P, Rodriguez y Baena R, Grignani G. et al . Endothelin and aneurysmal subarachnoid haemorrhage: a study of subarachnoid cisternal cerebrospinal fluid.  J Neurol Neurosurg Psychiatry. 1994;  57 66-72
  • 20 Gasic GP, Hollmann M. Molecular neurobiology of glutamate receptors.  Annu Rev Physiol. 1992;  54 507-536
  • 21 Giaroni C, Zanetti E, Marino F. et al . Glutamate receptors of the AMPA type modulate neurotransmitter release and peristalsis in the guinea-pig isolated colon.  Life Sci. 2000;  67 1747-1757
  • 22 Grasso G. An overview of new pharmacological treatments for cerebrovascular dysfunction after experimental subarachnoid hemorrhage.  Brain Res Brain Res Rev. 2004;  44 49-63
  • 23 Haxhiu MA, Erokwu B, Dreshaj IA. The role of excitatory amino acids in airway reflex responses in anesthetized dogs.  J Auton Nerv Syst. 1997;  67 192-199
  • 24 Hollmann M, Heinemann S. Cloned glutamate receptors.  Annu Rev Neurosci. 1994;  17 31-108
  • 25 Inagawa T, Yamamoto M, Kamiya K. Effect of clot removal on cerebral vasospasm.  J Neurosurg. 1990;  72 224-230
  • 26 Jackowski A, Crockard A, Burnstock G. et al . The time course of intracranial pathophysiological changes following experimental subarachnoid haemorrhage in the rat.  J Cereb Blood Flow Metab. 1990;  10 835-849
  • 27 Janardhan V, Biondi A, Riina HA. et al . Vasospasm in aneurysmal subarachnoid hemorrhage: diagnosis, prevention, and management.  Neuroimaging Clin N Am. 2006;  16 483-496
  • 28 Lerma J. Kainate receptors: an interplay between excitatory and inhibitory synapses.  FEBS Lett. 1998;  430 100-104
  • 29 Lima PA, Nardi G, Brown ER. AMPA/kainate and NMDA-like glutamate receptors at the chromatophore neuromuscular junction of the squid: role in synaptic transmission and skin patterning.  Eur J Neurosci. 2003;  17 507-516
  • 30 Liu MT, Rothstein JD, Gershon MD. et al . Glutamatergic enteric neurons.  J Neurosci. 1997;  17 4764-4784
  • 31 Loch Macdonald R. Management of cerebral vasospasm.  Neurosurg Rev. 2006;  29 179-193
  • 32 Martin DS, Haywood JR. Sympathetic nervous system activation by glutamate injections into the paraventricular nucleus.  Brain Res. 1992;  577 261-267
  • 33 Masos T, Miskin R. mRNAs encoding urokinase-type plasminogen activator and plasminogen activator inhibitor-1 are elevated in the mouse brain following kainate-mediated excitation.  Brain Res Mol Brain Res. 1997;  47 157-169
  • 34 Matsui K, Jahr CE. Differential control of synaptic and ectopic vesicular release of glutamate.  J Neurosci. 2004;  24 8932-8939
  • 35 Mayberg MR, Okada T, Bark DH. The significance of morphological changes in cerebral arteries after subarachnoid hemorrhage.  J Neurosurg. 1990;  72 626-633
  • 36 Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology.  J Nutr. 2000;  130 ((4S Suppl)) 1007S-1015S
  • 37 Milovanovic DR, Jankovic SM. A pharmacological analysis of the contractile effects of glutamate on rat and human isolated gut smooth muscle strips.  Methods Find Exp Clin Pharmacol. 2002;  24 661-668
  • 38 Mocco J, Zacharia BE, Komotar RJ. et al . A review of current and future medical therapies for cerebral vasospasm following aneurysmal subarachnoid hemorrhage.  Neurosurg Focus. 2006;  21 E9
  • 39 Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system.  Annu Rev Pharmacol Toxicol. 1989;  29 365-402
  • 40 Morley P, Small DL, Murray CL. et al . Evidence that functional glutamate receptors are not expressed on rat or human cerebromicrovascular endothelial cells.  J Cereb Blood Flow Metab. 1998;  18 396-406
  • 41 Morrison SF, Callaway J, Milner TA. et al . Glutamate in the spinal sympathetic intermediolateral nucleus: localization by light and electron microscopy.  Brain Res. 1989;  503 5-15
  • 42 Nishizawa O, Igawa Y, Satoh T. et al . Effects of glutamate receptor antagonists on lower urinary tract function in conscious unanesthetized rats.  Adv Exp Med Biol. 1999;  462 275-281
  • 43 Okada T, Harada T, Bark DH. et al . A rat femoral artery model for vasospasm.  Neurosurgery. 1990;  27 349-356
  • 44 Parfenova H, Fedinec A, Leffler CW. Ionotropic glutamate receptors in cerebral microvascular endothelium are functionally linked to heme oxygenase.  J Cereb Blood Flow Metab. 2003;  23 190-197
  • 45 Parfenova H, Neff 3rd RA, Alonso JS. et al . Cerebral vascular endothelial heme oxygenase: expression, localization, and activation by glutamate.  Am J Physiol Cell Physiol. 2001;  281 C1954-1963
  • 46 Piani D, Frei K, Do KQ. et al . Murine brain macrophages induced NMDA receptor mediated neurotoxicity in vitro by secreting glutamate.  Neurosci Lett. 1991;  133 159-162
  • 47 Rivlin PK, St Clair RM, Vilinsky I. et al . Morphology and molecular organization of the adult neuromuscular junction of Drosophila.  J Comp Neurol. 2004;  468 596-613
  • 48 Rogawski MA. Therapeutic potential of excitatory amino acid antagonists: channel blockers and 2,3-benzodiazepines.  Trends Pharmacol Sci. 1993;  14 325-331
  • 49 Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic-ischemic brain damage.  Ann Neurol. 1986;  19 105-111
  • 50 Smith SE, Durmuller N, Meldrum BS. The non-N-methyl-D-aspartate receptor antagonists, GYKI 52466 and NBQX are anticonvulsant in two animal models of reflex epilepsy.  Eur J Pharmacol. 1991;  201 179-183
  • 51 Smith SE, Meldrum BS. Cerebroprotective effect of a non-N-methyl-D-aspartate antagonist, GYKI 52466, after focal ischemia in the rat.  Stroke. 1992;  23 861-864
  • 52 St'astny F, Schwendt M, Lisy V. et al . Main subunits of ionotropic glutamate receptors are expressed in isolated rat brain microvessels.  Neurol Res. 2002;  24 93-96
  • 53 Tarnawa I, Farkas S, Berzsenyi P. et al . Electrophysiological studies with a 2,3-benzodiazepine muscle relaxant: GYKI 52466.  Eur J Pharmacol. 1989;  167 193-199
  • 54 Tsukahara T, Taniguchi T, Miwa S. et al . Presynaptic and postsynaptic alpha 2-adrenergic receptors in human cerebral arteries and their alteration after subarachnoid hemorrhage.  Stroke. 1988;  19 80-83
  • 55 Venugopal B, Sharon R, Abramovtz R. et al . Plasminogen activator inhibitor-1 in cardiovascular cells: rapid induction after injecting mice with kainate or adrenergic agents.  Cardiovascular Res. 2001;  49 476-483
  • 56 Vizi ES, Mike A, Tarnawa I. 2,3-benzodiazepines (GYKI 52466 and analogs): Negative allosteric modulators of AMPA receptors.  CNS Drugs Rev. 1996;  2 91-126
  • 57 Wilding TJ, Huettner JE. Differential antagonism of alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid-preferring and kainate-preferring receptors by 2,3-benzodiazepines.  Mol Pharmacol. 1995;  47 582-587
  • 58 Watkins JC, Evans RH. Excitatory amino acid transmitters.  Annu Rev Pharmacol Toxicol. 1981;  21 165-204
  • 59 Watkins JC, Krogsgaard-Larsen P, Honore T. Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists.  Trends Pharmacol Sci. 1990;  11 25-33
  • 60 Yoshiyama M, Roppolo JR, de Groat WC. Effects of LY215490, a competitive alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist, on the micturition reflex in the rat.  J Pharmacol Exp Ther. 1997;  280 894-904

Correspondence

Prof. A. Colak

Department of Neurosurgery

School of Medicine

Maltepe University

Atatürk cad. Çam sok. No:3

34843 Istanbul

Turkey

Phone: +216/399/97 50

Fax: +216/370/97 19

Email: drahmetcolak@yahoo.com

    >