Abstract
Today cancer treatment is not only a question of eliminating cancer cells by induction
of cell death. New therapeutic strategies also include targeting the tumour microenvironment,
avoiding angiogenesis, modulating the immune response or the chronic inflammation
that is often associated with cancer. Furthermore, the induction of redifferentiation
of dedifferentiated cancer cells is an interesting aspect in developing new therapy
strategies. Plants provide a broad spectrum of potential drug substances for cancer
therapy with multifaceted effects and targets. Pentacyclic triterpenes are one group
of promising secondary plant metabolites. This review summarizes the potential of
triterpenes belonging to the lupane, oleanane or ursane group, to treat cancer by
different modes of action. Since Pisha et al. reported in 1995 that betulinic acid
is a highly promising anticancer drug after inducing apoptosis in melanoma cell lines
in vitro and in vivo, experimental work focused on the apoptosis inducing mechanisms of betulinic acid
and other triterpenes. The antitumour effects were subsequently confirmed in a series
of cancer cell lines from other origins, for example breast, colon, lung and neuroblastoma.
In addition, in the last decade many studies have shown further effects that justify
the expectation that triterpenes are useful to treat cancer by several modes of action.
Thus, triterpene acids are known mainly for their antiangiogenic effects as well as
their differentiation inducing effects. In particular, lupane-type triterpenes, such
as betulin, betulinic acid and lupeol, display anti-inflammatory activities which
often accompany immune modulation. Triterpene acids as well as triterpene monoalcohols
and diols also show an antioxidative potential. The pharmacological potential of triterpenes
of the lupane, oleanane or ursane type for cancer treatment seems high; although up
to now no clinical trial has been published using these triterpenes in cancer therapy.
They provide a multitarget potential for coping with new cancer strategies. Whether
this is an effective approach for cancer treatment has to be proven. Because various
triterpenes are an increasingly promising group of plant metabolites, the utilisation
of different plants as their sources is of interest. Parts of plants, for example
birch bark, rosemary leaves, apple peel and mistletoe shoots are rich in triterpenes
and provide different triterpene compositions.
Key words
pentacyclic triterpenes - multifunctional agent - cancer treatment
References
- 1
Trosko J E.
The role of stem cells and gap junctions as targets for cancer chemoprevention and
chemotherapy.
Biomed Pharmacother.
2005;
59 (Suppl. 2)
326-331
- 2
Brenner D E, Gescher A J.
Cancer chemoprevention: lessons learned and future directions.
Br J Cancer.
2005;
93
735-739
- 3
Xu R, Fazio G C, Matsuda S P.
On the origins of triterpenoid skeletal diversity.
Phytochemistry.
2004;
65
261-291
- 4
Ekman R.
The submarin monomers and triterpenoids from the outer bark of Betula verrucosa EHRH.
Holzforschung.
1983;
37
205-211
- 5
Laszczyk M, Jäger S, Simon-Haarhaus B, Scheffler A, Schempp C M.
Physical, chemical and pharmacological characterization of a new oleogel-forming triterpene
extract from the outer bark of birch (betulae cortex).
Planta Med.
2006;
72
1389-1395
- 6
Jäger S, Trojan H, Kopp T, Laszczyk M N, Scheffler A.
Pentacyclic triterpene distribution in various plants – rich sources for a new group
of multi-potent plant extracts.
Molecules.
2009;
14
2016-2031
- 7
Chaturvedi P K, Bhui K, Shukla Y.
Lupeol: connotations for chemoprevention.
Cancer Lett.
2008;
263
1-13
- 8
Ovesna Z, Vachalkova A, Horvathova K, Tothova D.
Pentacyclic triterpenoic acids: new chemoprotective compounds. Minireview.
Neoplasma.
2004;
51
327-333
- 9
Fulda S.
Betulinic acid: a natural product with anticancer activity.
Mol Nutr Food Res.
2009;
53
140-146
- 10
Fulda S, Jeremias I, Steiner H H, Pietsch T, Debatin K M.
Betulinic acid: a new cytotoxic agent against malignant brain-tumor cells.
Int J Cancer.
1999;
82
435-441
- 11
Galgon T, Wohlrab W, Dräger B.
Betulinic acid induces apoptosis in skin cancer cells and differentiation in normal
human keratinocytes.
Exp Dermatol.
2005;
14
736-743
- 12
Kessler J H, Mullauer F B, de Roo G M, Medema J P.
Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most
prevalent human cancer types.
Cancer Lett.
2007;
251
132-145
- 13
Selzer E, Pimentel E, Wacheck V, Schlegel W, Pehamberger H, Jansen B, Kodym R.
Effects of betulinic acid alone and in combination with irradiation in human melanoma
cells.
J Invest Dermatol.
2000;
114
935-940
- 14
Zuco V, Supino R, Righetti S C, Cleris L, Marchesi E, Gambacorti-Passerini C, Formelli F.
Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells.
Cancer Lett.
2002;
175
17-25
- 15
Wachsberger P R, Burd R, Wahl M L, Leeper D B.
Betulinic acid sensitization of low pH adapted human melanoma cells to hyperthermia.
Int J Hyperthermia.
2002;
18
153-164
- 16
Noda Y, Kaiya T, Kohda K, Kawazoe Y.
Enhanced cytotoxicity of some triterpenes toward leukemia L1210 cells cultured in
low pH media: possibility of a new mode of cell killing.
Chem Pharm Bull (Tokyo).
1997;
45
1665-1670
- 17
Fulda S, Scaffidi C, Susin S A, Krammer P H, Kroemer G, Peter M E, Debatin K M.
Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic
acid.
J Biol Chem.
1998;
273
33942-33948
- 18
Tan Y, Yu R, Pezzuto J M.
Betulinic acid-induced programmed cell death in human melanoma cells involves mitogen-activated
protein kinase activation.
Clin Cancer Res.
2003;
9
2866-2875
- 19
Liu W K, Ho J C, Cheung F W, Liu B P, Ye W C, Che C T.
Apoptotic activity of betulinic acid derivatives on murine melanoma B16 cell line.
Eur J Pharmacol.
2004;
498
71-78
- 20
Martin R, Carvalho J, Ibeas E, Hernandez M, Ruiz-Gutierrez V, Nieto M L.
Acidic triterpenes compromise growth and survival of astrocytoma cell lines by regulating
reactive oxygen species accumulation.
Cancer Res.
2007;
67
3741-3751
- 21
Mullauer F B, Kessler J H, Medema J P.
Betulinic acid induces cytochrome c release and apoptosis in a Bax/Bak-independent,
permeability transition pore dependent fashion.
Apoptosis.
2009;
14
191-202
- 22
Fulda S, Friesen C, Los M, Scaffidi C, Mier W, Benedict M, Nunez G, Krammer P H, Peter M E,
Debatin K M.
Betulinic acid triggers CD95 (APO-1/Fas)- and p 53-independent apoptosis via activation
of caspases in neuroectodermal tumors.
Cancer Res.
1997;
57
4956-4964
- 23
Selzer E, Thallinger C, Hoeller C, Oberkleiner P, Wacheck V, Pehamberger H, Jansen B.
Betulinic acid-induced Mcl-1 expression in human melanoma–mode of action and functional
significance.
Mol Med.
2002;
8
877-884
- 24
Wick W, Grimmel C, Wagenknecht B, Dichgans J, Weller M.
Betulinic acid-induced apoptosis in glioma cells: a sequential requirement for new
protein synthesis, formation of reactive oxygen species, and caspase processing.
J Pharmacol Exp Ther.
1999;
289
1306-1312
- 25
Rzeski W, Stepulak A, Szymanski M, Sifringer M, Kaczor J, Wejksza K, Zdzisinska B,
Kandefer-Szerszen M.
Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation,
migration and induces apoptosis in cancer cells.
Naunyn Schmiedebergs Arch Pharmacol.
2006;
374
11-20
- 26
Kasperczyk H, La Ferla-Bruhl K, Westhoff M A, Behrend L, Zwacka R M, Debatin K M,
Fulda S.
Betulinic acid as new activator of NF-kappaB: molecular mechanisms and implications
for cancer therapy.
Oncogene.
2005;
24
6945-6956
- 27
Rabi T, Shukla S, Gupta S.
Betulinic acid suppresses constitutive and TNFalpha-induced NF-kappaB activation and
induces apoptosis in human prostate carcinoma PC-3 cells.
Mol Carcinogen.
2008;
47
964-973
- 28
Saleem M, Kweon M H, Yun J M, Adhami V M, Khan N, Syed D N, Mukhtar H.
A novel dietary triterpene Lupeol induces fas-mediated apoptotic death of androgen-sensitive
prostate cancer cells and inhibits tumor growth in a xenograft model.
Cancer Res.
2005;
65
11203-11213
- 29
Murtaza I, Saleem M, Adhami V M, Hafeez B B, Mukhtar H.
Suppression of cFLIP by lupeol, a dietary triterpene, is sufficient to overcome resistance
to TRAIL-mediated apoptosis in chemoresistant human pancreatic cancer cells.
Cancer Res.
2009;
69
1156-1165
- 30
Saleem M, Kaur S, Kweon M H, Adhami V M, Afaq F, Mukhtar H.
Lupeol, a fruit and vegetable based triterpene, induces apoptotic death of human pancreatic
adenocarcinoma cells via inhibition of Ras signaling pathway.
Carcinogenesis.
2005;
26
1956-1964
- 31
Manu K A, Kuttan G.
Ursolic acid induces apoptosis by activating p 53 and caspase-3 gene expressions and
suppressing NF-kappaB mediated activation of bcl-2 in B16F-10 melanoma cells.
Int Immunopharmacol.
2008;
8
974-981
- 32
Zhang P, Li H, Chen D, Ni J, Kang Y, Wang S.
Oleanolic acid induces apoptosis in human leukemia cells through caspase activation
and poly(ADP-ribose) polymerase cleavage.
Acta Biochim Biophys Sin (Shanghai).
2007;
39
803-809
- 33
Kim D S, Pezzuto J M, Pisha E.
Synthesis of betulinic acid derivatives with activity against human melanoma.
Bioorg Med Chem Lett.
1998;
8
1707-1712
- 34
Hata K, Hori K, Ogasawara H, Takahashi S.
Anti-leukemia activities of Lup-28-al-20(29)-en-3-one, a lupane triterpene.
Toxicol Lett.
2003;
143
1-7
- 35
Pyo J S, Roh S H, Kim D K, Lee J G, Lee Y Y, Hong S S, Kwon S W, Park J H.
Anti-cancer effect of betulin on a human lung cancer cell line: a pharmacoproteomic
approach using 2D SDS PAGE coupled with nano-HPLC tandem mass spectrometry.
Planta Med.
2009;
75
127-131
- 36
Juan M E, Wenzel U, Daniel H, Planas J M.
Erythrodiol, a natural triterpenoid from olives, has antiproliferative and apoptotic
activity in HT-29 human adenocarcinoma cells.
Mol Nutr Food Res.
2008;
52
595-599
- 37
Huyke C, Reuter J, Rodig M, Kersten A, Laszczyk M, Scheffler A, Nashan D, Schempp C.
Treatment of actinic keratoses with a novel betulin-based oleogel. A prospective,
randomized, comparative pilot study.
J Dtsch Dermatol Ges.
2009;
7
128-133
- 38
Sohn K H, Lee H Y, Chung H Y, Young H S, Yi S Y, Kim K W.
Anti-angiogenic activity of triterpene acids.
Cancer Lett.
1995;
94
213-218
- 39
Kiran M S, Viji R I, Sameer Kumar V B, Sudhakaran P R.
Modulation of angiogenic factors by ursolic acid.
Biochem Biophys Res Commun.
2008;
371
556-560
- 40
Cardenas C, Quesada A R, Medina M A.
Effects of ursolic acid on different steps of the angiogenic process.
Biochem Biophys Res Commun.
2004;
320
402-408
- 41
Jedinak A, Muckova M, Kost'alova D, Maliar T, Masterova I.
Antiprotease and antimetastatic activity of ursolic acid isolated from Salvia officinalis.
Z Naturforsch [C].
2006;
61
777-782
- 42
Melzig M F, Bormann H.
Betulinic acid inhibits aminopeptidase N activity.
Planta Med.
1998;
64
655-657
- 43
Bauvois B, Dauzonne D.
Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations,
and therapeutic prospects.
Med Res Rev.
2006;
26
88-130
- 44
Bhagwat S V, Lahdenranta J, Giordano R, Arap W, Pasqualini R, Shapiro L H.
CD13/APN is activated by angiogenic signals and is essential for capillary tube formation.
Blood.
2001;
97
652-659
- 45
Kwon H J, Shim J S, Kim J H, Cho H Y, Yum Y N, Kim S H, Yu J.
Betulinic acid inhibits growth factor-induced in vitro angiogenesis via the modulation of mitochondrial function in endothelial cells.
Jpn J Cancer Res.
2002;
93
417-425
- 46
Lee M S, Moon E J, Lee S W, Kim M S, Kim K W, Kim Y J.
Angiogenic activity of pyruvic acid in in vivo and in vitro angiogenesis models.
Cancer Res.
2001;
61
3290-3293
- 47
Chintharlapalli S, Papineni S, Ramaiah S K, Safe S.
Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein
transcription factors.
Cancer Res.
2007;
67
2816-2823
- 48
You Y J, Nam N H, Kim Y, Bae K H, Ahn B Z.
Antiangiogenic activity of lupeol from Bombax ceiba.
Phytother Res.
2003;
17
341-344
- 49
Mantovani A, Allavena P, Sica A, Balkwill F.
Cancer-related inflammation.
Nature.
2008;
454
436-444
- 50
Ahmad S F, Khan B, Bani S, Suri K A, Satti N K, Qazi G N.
Amelioration of adjuvant-induced arthritis by ursolic acid through altered Th1/Th2
cytokine production.
Pharmacol Res.
2006;
53
233-240
- 51
Altinier G, Sosa S, Aquino R P, Mencherini T, Della Loggia R, Tubaro A.
Characterization of topical antiinflammatory compounds in Rosmarinus officinalis L.
J Agric Food Chem.
2007;
55
1718-1723
- 52
Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H, Ukiya M, Watanabe K, Kimura Y,
Hasegawa J, Nishino H.
Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects.
Biosci Biotechnol Biochem.
2004;
68
85-90
- 53
de la Puerta R, Martinez-Dominguez E, Ruiz-Gutierrez V.
Effect of minor components of virgin olive oil on topical antiinflammatory assays.
Z Naturforsch [C].
2000;
55
814-819
- 54
Fernandez M A, de las Heras B, Garcia M D, Saenz M T, Villar A.
New insights into the mechanism of action of the anti-inflammatory triterpene lupeol.
J Pharm Pharmacol.
2001;
53
1533-1539
- 55
Miceli N, Taviano M F, Giuffrida D, Trovato A, Tzakou O, Galati E M.
Anti-inflammatory activity of extract and fractions from Nepeta sibthorpii Bentham.
J Ethnopharmacol.
2005;
97
261-266
- 56
Recio M C, Giner R M, Manez S, Gueho J, Julien H R, Hostettmann K, Rios J L.
Investigations on the steroidal anti-inflammatory activity of triterpenoids from Diospyros leucomelas.
Planta Med.
1995;
61
9-12
- 57
Alakurtti S, Makela T, Koskimies S, Yli-Kauhaluoma J.
Pharmacological properties of the ubiquitous natural product betulin.
Eur J Pharm Sci.
2006;
29
1-13
- 58
Cichewicz R H, Kouzi S A L.
Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for
the prevention and treatment of cancer and HIV infection.
Med Res Rev.
2004;
24
90-114
- 59
Eiznhamer D A, Xu Z Q.
Betulinic acid: a promising anticancer candidate.
IDrugs.
2004;
7
359-373
- 60
Bani S, Kaul A, Khan B, Ahmad S F, Suri K A, Gupta B D, Satti N K, Qazi G N.
Suppression of T-lymphocyte activity by lupeol isolated from Crataeva religiosa.
Phytother Res.
2006;
20
279-287
- 61
Kang S Y, Yoon S Y, Roh D H, Jeon M J, Seo H S, Uh D K, Kwon Y B, Kim H W, Han H J,
Lee H J, Lee J H.
The anti-arthritic effect of ursolic acid on zymosan-induced acute inflammation and
adjuvant-induced chronic arthritis models.
J Pharm Pharmacol.
2008;
60
1347-1354
- 62 Laszczyk M N. Triterpentrockenextrakt aus Birkenkork (Betula alba cortex) [dissertation]. Freiburg; Albert-Ludwigs-University 2007
- 63
Yun Y, Han S, Park E, Yim D, Lee S, Lee C K, Cho K, Kim K.
Immunomodulatory activity of betulinic acid by producing pro-inflammatory cytokines
and activation of macrophages.
Arch Pharm Res.
2003;
26
1087-1095
- 64
Ikeda Y, Murakami A, Fujimura Y, Tachibana H, Yamada K, Masuda D, Hirano K, Yamashita S,
Ohigashi H.
Aggregated ursolic acid, a natural triterpenoid, induces IL-1beta release from murine
peritoneal macrophages: role of CD36.
J Immunol.
2007;
178
4854-4864
- 65
Marquez-Martin A, De La Puerta R, Fernandez-Arche A, Ruiz-Gutierrez V, Yaqoob P.
Modulation of cytokine secretion by pentacyclic triterpenes from olive pomace oil
in human mononuclear cells.
Cytokine.
2006;
36
211-217
- 66
Vasconcelos M A, Royo V A, Ferreira D S, Crotti A E, Andrade e Silva M L, Carvalho J C,
Bastos J K, Cunha W R.
In vivo analgesic and anti-inflammatory activities of ursolic acid and oleanoic acid from
Miconia albicans (Melastomataceae).
Z Naturforsch [C].
2006;
61
477-482
- 67
Van Waes C.
Nuclear factor-kappaB in development, prevention, and therapy of cancer.
Clin Cancer Res.
2007;
13
1076-1082
- 68
Takada Y, Aggarwal B B.
Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition
of I kappa B alpha kinase and p 65 phosphorylation: abrogation of cyclooxygenase-2
and matrix metalloprotease-9.
J Immunol.
2003;
171
3278-3286
- 69
Shishodia S, Majumdar S, Banerjee S, Aggarwal B B.
Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents
through suppression of IkappaBalpha kinase and p 65 phosphorylation: correlation with
down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1.
Cancer Res.
2003;
63
4375-4383
- 70
You H J, Choi C Y, Kim J Y, Park S J, Hahm K S, Jeong H G.
Ursolic acid enhances nitric oxide and tumor necrosis factor-alpha production via
nuclear factor-kappaB activation in the resting macrophages.
FEBS Lett.
2001;
509
156-160
- 71
Choi C Y, You H J, Jeong H G L.
Nitric oxide and tumor necrosis factor-alpha production by oleanolic acid via nuclear
factor-kappaB activation in macrophages.
Biochem Biophys Res Commun.
2001;
288
49-55
- 72
Suh N, Honda T, Finlay H J, Barchowsky A, Williams C, Benoit N E, Xie Q W, Nathan C,
Gribble G W, Sporn M B.
Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible
cyclooxygenase (COX-2) in mouse macrophages.
Cancer Res.
1998;
58
717-723
- 73
Bernard P, Scior T, Didier B, Hibert M, Berthon J Y L.
Ethnopharmacology and bioinformatic combination for leads discovery: application to
phospholipase A(2) inhibitors.
Phytochemistry.
2001;
58
865-874
- 74
Dharmappa K K, Kumar R V, Nataraju A, Mohamed R, Shivaprasad H V, Vishwanath B S.
Anti-inflammatory activity of oleanolic acid by inhibition of secretory phospholipase
A2.
Planta Med.
2009;
75
211-215
- 75
Reyes C P, Nunez M J, Jimenez I A, Busserolles J, Alcaraz M J, Bazzocchi I L.
Activity of lupane triterpenoids from Maytenus species as inhibitors of nitric oxide and prostaglandin E2.
Bioorg Med Chem.
2006;
14
1573-1579
- 76
Saleem M, Afaq F, Adhami V M, Mukhtar H.
Lupeol modulates NF-kappaB and PI3K/Akt pathways and inhibits skin cancer in CD-1
mice.
Oncogene.
2004;
23
5203-5214
- 77
Telliez A, Furman C, Pommery N, Henichart J P.
Mechanisms leading to COX-2 expression and COX-2 induced tumorigenesis: topical therapeutic
strategies targeting COX-2 expression and activity.
Anticancer Agents Med Chem.
2006;
6
187-208
- 78
Valko M, Leibfritz D, Moncol J, Cronin M T, Mazur M, Telser J.
Free radicals and antioxidants in normal physiological functions and human disease.
Int J Biochem Cell Biol.
2007;
39
44-84
- 79
Castelao J E, Gago-Dominguez M.
Risk factors for cardiovascular disease in women: relationship to lipid peroxidation
and oxidative stress.
Med Hypotheses.
2008;
71
39-44
- 80
Leitinger N.
The role of phospholipid oxidation products in inflammatory and autoimmune diseases:
evidence from animal models and in humans.
Subcell Biochem.
2008;
49
325-350
- 81
Valko M, Rhodes C J, Moncol J, Izakovic M, Mazur M.
Free radicals, metals and antioxidants in oxidative stress-induced cancer.
Chem Biol Interact.
2006;
160
1-40
- 82
Kalpakcioglu B, Senel K.
The interrelation of glutathione reductase, catalase, glutathione peroxidase, superoxide
dismutase, and glucose-6-phosphate in the pathogenesis of rheumatoid arthritis.
Clin Rheumatol.
2008;
27
141-145
- 83
Afonso V, Champy R, Mitrovic D, Collin P, Lomri A.
Reactive oxygen species and superoxide dismutases: role in joint diseases.
Joint Bone Spine.
2007;
74
324-329
- 84
Fernandes A P, Holmgren A.
Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple
thioredoxin backup system.
Antioxid Redox Signal.
2004;
6
63-74
- 85
Prasad S, Kalra N, Singh M, Shukla Y.
Protective effects of lupeol and mango extract against androgen induced oxidative
stress in Swiss albino mice.
Asian J Androl.
2008;
10
313-318
- 86
Ramachandran S, Prasad N R.
Effect of ursolic acid, a triterpenoid antioxidant, on ultraviolet-B radiation-induced
cytotoxicity, lipid peroxidation and DNA damage in human lymphocytes.
Chem Biol Interact.
2008;
176
99-107
- 87
Sudhahar V, Ashok Kumar S, Varalakshmi P, Sujatha V.
Protective effect of lupeol and lupeol linoleate in hypercholesterolemia associated
renal damage.
Mol Cell Biochem.
2008;
317
11-20
- 88
Sudharsan P T, Mythili Y, Selvakumar E, Varalakshmi P.
Cardioprotective effect of pentacyclic triterpene, lupeol and its ester on cyclophosphamide-induced
oxidative stress.
Hum Exp Toxicol.
2005;
24
313-318
- 89
Sultana S, Saleem M, Sharma S, Khan N.
Lupeol, a triterpene, prevents free radical mediated macromolecular damage and alleviates
benzoyl peroxide induced biochemical alterations in murine skin.
Indian J Exp Biol.
2003;
41
827-831
- 90
Malini M M, Lenin M, Varalakshmi P.
Protective effect of triterpenes on calcium oxalate crystal-induced peroxidative changes
in experimental urolithiasis.
Pharmacol Res.
2000;
41
413-418
- 91
Geetha T, Varalakshmi P.
Anticomplement activity of triterpenes from Crataeva nurvala stem bark in adjuvant arthritis in rats.
Gen Pharmacol.
1999;
32
495-497
- 92
Vidya L, Malini M M, Varalakshmi P.
Effect of pentacyclic triterpenes on oxalate-induced changes in rat erythrocytes.
Pharmacol Res.
2000;
42
313-316
- 93
Geetha T, Varalakshmi P, Latha R M.
Effect of triterpenes from Crataeva nurvala stem bark on lipid peroxidation in adjuvant induced arthritis in rats.
Pharmacol Res.
1998;
37
191-195
- 94
Vidya L, Varalakshmi P.
Control of urinary risk factors of stones by betulin and lupeol in experimental hyperoxaluria.
Fitoterapia.
2000;
71
535-543
- 95
Sudhahar V, Ashokkumar S, Varalakshmi P.
Effect of lupeol and lupeol linoleate on lipemic – hepatocellular aberrations in rats
fed a high cholesterol diet.
Mol Nutr Food Res.
2006;
50
1212-1219
- 96
Sudhahar V, Kumar S A, Sudharsan P T, Varalakshmi P.
Protective effect of lupeol and its ester on cardiac abnormalities in experimental
hypercholesterolemia.
Vasc Pharmacol.
2007;
46
412-418
- 97
Prasad S, Kalra N, Shukla Y.
Hepatoprotective effects of lupeol and mango pulp extract of carcinogen induced alteration
in Swiss albino mice.
Mol Nutr Food Res.
2007;
51
352-359
- 98
Preetha S P, Kanniappan M, Selvakumar E, Nagaraj M, Varalakshmi P.
Lupeol ameliorates aflatoxin B1-induced peroxidative hepatic damage in rats.
Comp Biochem Physiol C Toxicol Pharmacol.
2006;
143
333-339
- 99
Nagaraj M, Sunitha S, Varalakshmi P.
Effect of lupeol, a pentacyclic triterpene, on the lipid peroxidation and antioxidant
status in rat kidney after chronic cadmium exposure.
J Appl Toxicol.
2000;
20
413-417
- 100
Sunitha S, Nagaraj M, Varalakshmi P.
Hepatoprotective effect of lupeol and lupeol linoleate on tissue antioxidant defence
system in cadmium-induced hepatotoxicity in rats.
Fitoterapia.
2001;
72
516-523
- 101
Saleem M, Alam A, Arifin S, Shah M S, Ahmed B, Sultana S.
Lupeol, a triterpene, inhibits early responses of tumor promotion induced by benzoyl
peroxide in murine skin.
Pharmacol Res.
2001;
43
127-134
- 102
Nigam N, Prasad S, Shukla Y.
Preventive effects of lupeol on DMBA induced DNA alkylation damage in mouse skin.
Food Chem Toxicol.
2007;
45
2331-2335
- 103
Miura N, Matsumoto Y, Miyairi S, Nishiyama S, Naganuma A.
Protective effects of triterpene compounds against the cytotoxicity of cadmium in
HepG2 cells.
Mol Pharmacol.
1999;
56
1324-1328
- 104
Szuster-Ciesielska A, Kandefer-Szerszen M.
Protective effects of betulin and betulinic acid against ethanol-induced cytotoxicity
in HepG2 cells.
Pharmacol Rep.
2005;
57
588-595
- 105
Furtado R A, Rodrigues E P, Araujo F R, Oliveira W L, Furtado M A, Castro M B, Cunha W R,
Tavares D C.
Ursolic acid and oleanolic acid suppress preneoplastic lesions induced by 1, 2-dimethylhydrazine
in rat colon.
Toxicol Pathol.
2008;
36
576-580
- 106
Liu J, Wu Q, Lu Y F, Pi J.
New insights into generalized hepatoprotective effects of oleanolic acid: key roles
of metallothionein and Nrf2 induction.
Biochem Pharmacol.
2008;
76
922-928
- 107
Eggler A L, Gay K A, Mesecar A D.
Molecular mechanisms of natural products in chemoprevention: induction of cytoprotective
enzymes by Nrf2.
Mol Nutr Food Res.
2008;
52 (Suppl. 1)
S84-S94
- 108
Lee K H, Nam G W, Kim S H, Lee S H.
Phytocomponents of triterpenoids, oleanolic acid and ursolic acid, regulated differently
the progressing of epidermal keratinocytes via PPAR-a pathway.
Exp Dermatol.
2006;
15
66-73
- 109
Woelfle U L M, Kraus M, Leuner K, Kersten A, Simon-Haarhaus B, Scheffler A, Martin S F,
Müller W E, Nashan D, Schempp C M.
Triterpenes promote keratinocyte differentiation in vitro, ex vivo and in vivo. A role for the transient receptor potential canonical (subtype) 6.
JID.
2009;
DOI: 10.1038/jid.2009.248
- 110
Schmuth M, Jiang Y J, Dubrac S, Elias P M, Feingold K R.
Thematic review series: skin lipids. Peroxisome proliferator-activated receptors and
liver X receptors in epidermal biology.
J Lipid Res.
2008;
49
499-509
- 111
Lim S W, Hong S P, Jeong S W, Kim B, Bak H, Ryoo H C, Lee S H, Ahn S K.
Simultaneous effect of ursolic acid and oleanolic acid on epidermal permeability barrier
function and epidermal keratinocyte differentiation via peroxisome proliferator-activated
receptor-alpha.
J Dermatol.
2007;
34
625-634
- 112
Muller M, Essin K, Hill K, Beschmann H, Rubant S, Schempp C M, Gollasch M, Boehncke W H,
Harteneck C, Muller W E, Leuner K.
Specific TRPC6 channel activation, a novel approach to stimulate keratinocyte differentiation.
J Biol Chem.
2008;
283
33942-33954
- 113
Lee H Y, Chung H Y, Kim K H, Lee J J, Kim K W.
Induction of differentiation in the cultured F9 teratocarcinoma stem cells by triterpene
acids.
J Cancer Res Clin Oncol.
1994;
120
513-518
- 114
Paik K J, Jeon S S, Chung H Y, Lee K H, Kim K W, Chung J K, Kim N D.
Induction of differentiation of the cultured rat mammary epithelial cells by triterpene
acids.
Arch Pharm Res.
1998;
21
398-405
- 115
Hata K, Hori K, Murata J, Takahashi S.
Remodeling of actin cytoskeleton in lupeol-induced B16 2F2 cell differentiation.
J Biochem.
2005;
138
467-472
- 116
Ogiwara K, Hata K.
Melanoma cell differentiation induced by lupeol separates into two stages: morphological
and functional changes.
Nat Med (Tokyo).
2009;
63
323-326
- 117
Poon K H, Zhang J, Wang C, Tse A K, Wan C K, Fong W F.
Betulinic acid enhances 1alpha,25-dihydroxyvitamin D3-induced differentiation in human
HL-60 promyelocytic leukemia cells.
Anticancer Drugs.
2004;
15
619-624
- 118
Hata K, Hori K, Takahashi S.
Differentiation- and apoptosis-inducing activities by pentacyclic triterpenes on a
mouse melanoma cell line.
J Nat Prod.
2002;
65
645-648
- 119
Pisha E, Chai H, Lee I S, Chagwedera T E, Farnsworth N R, Cordell G A, Beecher C W,
Fong H H, Kinghorn A D, Brown D M, Wani M C, Wall M E, Hieken T J, Das Gupta T K,
Pezzuto J M.
Discovery of betulinic acid as a selective inhibitor of human melanoma that functions
by induction of apoptosis.
Nat Med.
1995;
1
1046-1051
- 120
Udeani G O, Zhao G M, Geun Shin Y, Cooke B P, Graham J, Beecher C W, Kinghorn A D,
Pezzuto J M.
Pharmacokinetics and tissue distribution of betulinic acid in CD-1 mice.
Biopharm Drug Dispos.
1999;
20
379-383
- 121
Jäger S, Laszczyk M N, Scheffler A.
A preliminary pharmacokinetic study of betulin, the main pentacyclic triterpene from
extract of outer bark of birch (Betulae alba cortex).
Molecules.
2008;
13
3224-3235
- 122
Jäger S, Winkler K, Pfüller U, Scheffler A.
Solubility studies of oleanolic acid and betulinic acid in aqueous solutions and plant
extracts of Viscum album L.
Planta Med.
2007;
73
157-162
- 123
Prasad S, Kalra N, Shukla Y.
Induction of apoptosis by lupeol and mango extract in mouse prostate and LNCaP cells.
Nutr Cancer.
2008;
60
120-130
- 124
Saleem M, Maddodi N, Abu Zaid M, Khan N, bin Hafeez B, Asim M, Suh Y, Yun J M, Setaluri V,
Mukhtar H.
Lupeol inhibits growth of highly aggressive human metastatic melanoma cells in vitro and in vivo by inducing apoptosis.
Clin Cancer Res.
2008;
14
2119-2127
- 125
Raphael T J, Kuttan G.
Effect of naturally occurring triterpenoids ursolic acid and glycyrrhizic acid on
the cell-mediated immune responses of metastatic tumor-bearing animals.
Immunopharmacol Immunotoxicol.
2008;
30
243-255
- 126
Lee I, Lee J, Lee Y H, Leonard J.
Ursolic acid-induced changes in tumor growth, O2 consumption, and tumor interstitial
fluid pressure.
Anticancer Res.
2001;
21
2827-2833
- 127
Sawada N, Kataoka K, Kondo K, Arimochi H, Fujino H, Takahashi Y, Miyoshi T, Kuwahara T,
Monden Y, Ohnishi Y.
Betulinic acid augments the inhibitory effects of vincristine on growth and lung metastasis
of B16F10 melanoma cells in mice.
Br J Cancer.
2004;
90
1672-1678
- 128
Lee T K, Poon R T, Wo J Y, Ma S, Guan X Y, Myers J N, Altevogt P, Yuen A P.
Lupeol suppresses cisplatin-induced nuclear factor-kappaB activation in head and neck
squamous cell carcinoma and inhibits local invasion and nodal metastasis in an orthotopic
nude mouse model.
Cancer Res.
2007;
67
8800-8809
- 129
Liu J.
Pharmacology of oleanolic acid and ursolic acid.
J Ethnopharmacol.
1995;
49
57-68
- 130
Singh G B, Singh S, Bani S, Gupta B D, Banerjee S K.
Anti-inflammatory activity of oleanolic acid in rats and mice.
J Pharm Pharmacol.
1992;
44
456-458
- 131
Shin Y G, Cho K H, Chung S M, Graham J, Das Gupta T K, Pezzuto J M.
Determination of betulinic acid in mouse blood, tumor and tissue homogenates by liquid
chromatography-electrospray mass spectrometry.
J Chromatogr B Biomed Sci Appl.
1999;
732
331-336
- 132
Guo M, Zhang S, Song F, Wang D, Liu Z, Liu S.
Studies on the non-covalent complexes between oleanolic acid and cyclodextrins using
electrospray ionization tandem mass spectrometry.
J Mass Spectrom.
2003;
38
723-731
- 133
Strüh C, Jäger S, Schempp C M, Scheffler A, Martin S F.
Solubilized triterpenes from mistletoe show anti-tumor effects on skin-derived cell
lines.
Planta Med.
2008;
74
1130
- 134
Kang H S, Park J E, Lee Y J, Chang I S, Chung Y I, Tae G.
Preparation of liposomes containing oleanolic acid via micelle-to-vesicle transition.
J Nanosci Nanotechnol.
2007;
7
3944-3948
Dr. Melanie N. Laszczyk
Betulin-Institut
Blumenstr. 25
64297 Darmstadt
Germany
Phone: + 49 72 33 82 93 71
Email: m.laszczyk@betulin-institut.de