Horm Metab Res 2009; 41(2): 137-141
DOI: 10.1055/s-0028-1128143
Original

© Georg Thieme Verlag KG Stuttgart · New York

Relationships between Glucose Variability and Conventional Measures of Glycemic Control in Continuously Monitored Patients with Type 2 Diabetes

K.-D. Kohnert 1 , L. Vogt 2 , P. Augstein 1 , P. Heinke 1 , E. Zander 3 , K. Peterson 1 , E.-J. Freyse 1 , E. Salzsieder 1
  • 1Institute of Diabetes “Gerhardt Katsch” Karlsburg, Karlsburg, Germany
  • 2Diabetes Service Center Karlsburg, Karlsburg, Germany
  • 3Clinics for Diabetes and Metabolic Diseases, Karlsburg, Germany
Further Information

Publication History

received 29.10.2008

accepted 19.12.2008

Publication Date:
12 February 2009 (online)

Abstract

Given the importance of glucose variability in the development of diabetic complications, the present study used continuous glucose monitoring (CGM) to determine various indices of glucose variability and to investigate their relationships with conventional measures of chronic sustained hyperglycemia. We examined 53 women and 61 men, aged 36–79 years afflicted with type 2 diabetes for 1–24 years. The following indices of glycemic variability were computed from CGM data sets: mean amplitude of glycemic excursions (MAGE), CGM glucose range, interquartile range (IQR), SD-score, and average daily risk range (ADRR). CGM measurements and self-monitored blood glucose (SMBG) records were used to calculate mean CGM sensor glucose and mean SMBG, respectively. In simple correlation analysis, the indices of glucose variability showed weak correlations with HbA1c: MAGE (r=0.27, p<0.01), CGM glucose range (r=0.21, p<0.05), IQR (r=0.31, p<0.01), SD-score (r=0.34, p<0.001), and ADRR (r=0.24, p<0.05). These indices were found to differ at identical HbA1c among several patients, as reflected by diurnal excursions of different frequency and magnitude. With the exception of ADRR, stronger correlations were found between mean SMBG and the other variability indices (r=0.51–0.63, p<0.01 for all). CGM provides various indices of glycemic variability not captured by conventional measures of glycemic control. Detection of the location and the magnitude of glucose fluctuations by CGM should aid in optimal treatment of glycemic disorders in type 2 diabetes.

References

  • 1 UK Prospective Diabetes Study Group . Intensive blood-glucose control with sulfonylureas or insulin compared with conventional treatment and risk complications in patients with type 2 diabetes (UKPDS 33).  Lancet. 1993;  352 977-986
  • 2 Monnier L, Coette C. Glycemic variability: should we and can we prevent it?.  Diabetes Care. 2008;  31 S150-S154
  • 3 Derr R, Garret E, Stacy GA, Saudek CD. Is HbA1c affected by glycemic instability?.  Diabetes Care. 2003;  26 2728-2733
  • 4 Monnier L, Maas E, Ginet C, Michel F, Villon I, Cistol JP, Coette C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes.  JAMA. 2006;  295 1681-1686
  • 5 The Diabetes Control and Complications Trial Research Group . The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the Diabetes Control and Complications Trial.  Diabetes. 1995;  44 968-983
  • 6 Pistrosch F, Reissmann E, Wildbrett J, Koehler C, Hanefeld M. Relationship between diurnal blood pressure variation and diurnal blood glucose levels in type 2 diabetic patients.  Am J Hypertens. 2007;  20 541-545
  • 7 Colette C, Monnier L. Acute glucose fluctuations and chronic sustained hyperglycemia as risk factors for cardiovascular diseases in patients with type 2 diabetes.  Horm Metab Res. 2007;  39 683-686
  • 8 Evans JM, Newton RW, Ruta DA, MacDonald TM, Stevenson RA, Morris AD. Frequency of blood glucose monitoring in relation to glycemic control: observational study with diabetes data base.  BMJ. 1999;  319 83-86
  • 9 Klonoff DC. Continuous glucose monitoring: roadmap for the 21th century diabetes therapy.  Diabetes Care. 2005;  28 1231-1239
  • 10 Hirsch IB. Algorithms for care in adults using continuous glucose monitoring.  J Diabetes Sci Technol. 2007;  1 126-129
  • 11 Schrezenmeir J, Fenselau S, Keppler I, Abel J, Orth B, Laue CH, Sturmer W, Fauth O, Halmagyi M. Postprandial triglyceride high response and the metabolic syndrome.  Ann N J Acad Sci. 1997;  827 353-368
  • 12 Kohnert KD, Augstein P, Heinke P, Zander E, Peterson K, Freyse EJ, Salzsieder E. Chronic hyperglycemia but not glucose variability determines HbA1c levels in well-controlled patients with type 2 diabetes.  Diab Res Clin Pract. 2007;  77 420-426
  • 13 American Diabetes Association . Standards of medical care in diabetes-2006.  Diabetes Care. 2006;  29 S10-S11
  • 14 Rodbard D. Optimizing display, analysis, interpretation and utility of self-monitoring of blood glucose (SMBG) data for management of patients with diabetes.  J Diabetes Sci Technol. 2007;  1 62-71
  • 15 Service FJ, Molnar GD, Rosevear JW, Ackerman F, Gatewood LC, Taylor WF. Mean amplitude of glycemic excursions, a measure of diabetic instability.  Diabetes. 1970;  19 644-665
  • 16 Kovatchev BP, Otto E, Cox D, Gonder-Frederick L, Clark L. Evaluation of a new measure of blood glucose variability in diabetes.  Diabetes care. 2006;  29 2433-2438
  • 17 Kovatchev BP, Crean J, MacCall A. Pramlintide reduces the risk associated with glucose variability in type 1 diabetes.  Diabetes Technol Ther. 2008;  10 391-396
  • 18 Mazze R. The future of self-monitored blood glucose: mean blood glucose versus glycosylated hemoglobin.  Diabetes Technol Ther. 2008;  10 S93-S101
  • 19 Schwarz PHE, Schwarz J, Bornstein SR, Schulze J. Diabetes prevention – from physiology to implementation.  Horm Metab Res. 2006;  38 460-464
  • 20 Schwarz PEH, Muylle F, Valensi P, Hall P. The European perspective of diabetes prevention.  Horm Metab Res. 2008;  40 511-514

Correspondence

K.-D. KohnertMD, PhD 

Institute of Diabetes “Gerhardt Katsch”

Greifswalder Str. 11e

17495 Karlsburg

Germany

Phone: +49/383/55 684 06

Fax: +49/383/55 684 44

Email: kohnert@diabetes-karlsburg.de

    >