Zusammenfassung
Die steigende Lebenserwartung der modernen Gesellschaft resultiert in einer stetig
wachsenden Zahl an Patienten mit Demenzerkrankungen, insbesondere der Alzheimer-Demenz
(AD). Dies hat neben den Folgen für die betroffenen Patienten und ihre Angehörigen
auch besorgniserregende sozioökonomische Konsequenzen. Diese Tatsachen haben in den
letzten Jahren vermehrte Anstrengungen bedingt, die Ursachen der Demenzerkrankungen
besser aufzuklären und therapeutische Interventionsmöglichkeiten zu identifizieren.
Viele Hinweise deuten darauf hin, dass am Anfang des Erkrankungsprozesses vieler neurodegenerativer
Erkrankungen die vermehrte Produktion spezifischer Proteine und deren pathologische
Ablagerung im Gehirn steht. Unter den bekanntesten Vertretern dieser pathologischen
Proteinablagerungen sind die sogenannten Amyloidplaques, die durch Aggregation des
ß-Amyloidproteins im Gehirn entstehen und als histopathologisches Kernmerkmal der
Alzheimer Erkrankung gelten. Der Amyloidpathologie wird eine mögliche kausale Rolle
in der Entwicklung der Alzheimer-Demenz zugesprochen und verschiedene moderne Therapieansätze
sind daher auf diese Pathologie ausgerichtet. Die limitierte Zugänglichkeit des Gehirngewebes
hat bisher bedingt, dass eine sichere Diagnose der AD primär nur post mortem durch
den histopathologischen Nachweis der Amyloidplaques in Analysen des Gehirngewebes
gestellt werden konnte. Aus dem identischen Grund konnten bisher Zusammenhänge zwischen
Ausmaß der Amyloidplaque-Ablagerungen und klinischem Verlauf nicht sicher etabliert
werden. Gerade die Option neuer therapeutischer Ansätze bedingt aber die Notwendigkeit
einer zuverlässigen In-vivo-Diagnostik, um möglichst frühzeitig und gezielt mit Therapien
beginnen zu können. Mit modernen Tracern wie dem [11C]PIB stehen nun erstmals Methoden der molekularen Bildgebung zur Verfügung die es
ermöglichen, mit der PositronenEmissions-Tomografie (PET) Amyloidplaque-Ablagerungen
im Gehirn in vivo nachzuweisen. Diese Methoden eröffnen die Möglichkeit, neurodegenerative
Demenzerkrankungen auf der Basis der zugrunde liegenden Pathologie zu charakterisieren,
anstelle der rein klinisch-symptomatischen Diagnostik. Diese Art der „In-vivo-Histopathologie”
hat das Potenzial, die Früh- und Differenzialdiagnostik der Demenzerkrankungen zu
optimieren und könnte als wertvolles Werkzeug für die Patientenselektion für Therapiestudien
und für eine objektive Therapiekontrolle dienen.
Abstract
The increasing life-expectancy of our society results in a continuously growing number
of patients suffering from dementing disorders, particularly Alzheimer's disease (AD).
Apart from the deleterious consequences for the patients and their relatives, this
has also alarming effects on our social systems. These facts have justified increased
scientific efforts regarding the identification of basic pathomechanisms of dementia
and the development of new treatment options. Increased production of specific proteins
and their pathologic aggregation in the brain appears to be a pathomechanism which
occurs early in the course of many different neurodegenerative disorders. Among the
most well-known of these protein aggregations are the amyloid-plaques, which arise
from the aggregation of the ß-amyloid protein. Currently, this amyloid-aggregation
pathology is regarded as a key pathology, playing a causal role in the development
of AD. Consequently, modern therapy approaches are directed towards this target. Limited
access to brain tissue has so far restricted the definite diagnosis of AD to post
mortem histopathological assessment of brain tissue. For the same reason, a clear
association between extent of amyloid deposition pathology and clinical course of
AD has not been established so far. However, particularly with regard to new therapeutic
options a reliable in vivo diagnosis is required. Modern molecular imaging tracers
such as [11C]PIB do now open the possibility to visualize amyloid-depositions in vivo, using
Positron Emission Tomography (PET). These techniques allow the characterization of
dementing disorders on the basis of the underlying pathology rather than on their
symptomatic appearance. This type of “in vivo histopathology”-approach may offer improved
options for early and differential diagnosis, as well as for patient selection for
therapy trials and for objective therapy monitoring.
Schlüsselwörter
Amyloidplaque-Bildgebung - [11C]PIB PET - Alzheimer-Demenz - Neurodegeneration
Key words
amyloid plaque imaging - [11C]PIB PET - Alzheimer's disease - dementia - neurodegeneration
Literatur
- 1
Alafuzoff I.
The pathology of dementias: an overview.
Acta Neurol Scand Suppl.
1992;
139
8-15
- 2
Bacskai BJ. et al .
Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report.
Arch Neurol.
2007;
64
431-434
- 3
Bickel H.
Dementia syndrome and Alzheimer disease: an assessment of morbidity and annual incidence
in Germany.
Gesundheitswesen.
2000;
62
211-218
- 4
Boyle PA. et al .
Mild cognitive impairment: risk of Alzheimer disease and rate of cognitive decline.
Neurology.
2006;
67
441-445
- 5
Davies R. et al .
The pathological basis of semantic dementia.
Brain.
2005;
128
((Pt 9))
1984-1995
- 6
Drzezga A. et al .
Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and
Alzheimer's disease.
Neuroimage.
2008;
39
619-633
- 7
Engler H. et al .
Two-year follow-up of amyloid deposition in patients with Alzheimer's disease.
Brain.
2006;
- 8
Engler H. et al .
In vivo amyloid imaging with PET in frontotemporal dementia.
Eur J Nucl Med Mol Imaging.
2007;
- 9
Fodero-Tavoletti MT. et al .
In vitro characterization of Pittsburgh compound-B binding to Lewy bodies.
J Neurosci.
2007;
27
10365-10371
- 10
Forsberg A. et al .
PET imaging of amyloid deposition in patients with mild cognitive impairment.
Neurobiol Aging.
2007;
- 11
Forstl H, Kurz A.
Clinical features of Alzheimer's disease.
Eur Arch Psychiatry Clin Neurosci.
1999;
249
288-290
- 12
Gomperts SN. et al .
Imaging amyloid deposition in Lewy body diseases.
Neurology.
2008;
71
903-910
- 13
Hardy JA, Higgins GA.
Alzheimer's disease: the amyloid cascade hypothesis.
Science.
1992;
256
((5054))
184-185
- 14
Hebert LE. et al .
Alzheimer disease in the US population: prevalence estimates using the 2000 census.
Arch Neurol.
2003;
60
((8))
1119-1122
- 15
Henriksen G. et al .
Development and evaluation of compounds for imaging of beta-amyloid plaque by means
of positron emission tomography.
Eur J Nucl Med Mol Imaging.
2008;
35
((Suppl 1))
S75-S81
- 16
Hull M, Berger M, Heneka M.
Disease-modifying therapies in Alzheimer's disease: how far have we come?.
Drugs.
2006;
66
2075-2093
- 17
Ikeda M, Ishikawa T, Tanabe H.
Epidemiology of frontotemporal lobar degeneration.
Dement Geriatr Cogn Disord.
2004;
17
265-268
- 18
Ikonomovic MD. et al .
Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's
disease.
Brain.
2008;
131
((Pt 6))
1630-1645
- 19
.
, Informationsblatt, Deutsche Alzheimer Gesellschaft: Das Wichtigste 1 – Die Epidemiologie
der Demenz, Stand 06/2008
- 20
Johnson JK. et al .
Frontotemporal lobar degeneration: demographic characteristics of 353 patients.
Arch Neurol.
2005;
62
925-930
- 21
Johnson KA. et al .
Imaging of amyloid burden and distribution in cerebral amyloid angiopathy.
Ann Neurol.
2007;
62
229-234
- 22
Klunk WE. et al .
Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B.
Ann Neurol.
2004;
55
306-319
- 23
Leinonen V. et al .
Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron
emission tomography with carbon 11-labeled Pittsburgh Compound B.
Arch Neurol.
2008;
65
1304-1309
- 24
Lockhart A. et al .
PIB is a non-specific imaging marker of amyloid-beta (Abeta) peptide-related cerebral
amyloidosis.
Brain.
2007;
130
((Pt 10))
2607-2615
- 25
McKeith I. et al .
Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT
in dementia with Lewy bodies: a phase III, multicentre study.
Lancet Neurol.
2007;
6
305-313
- 26
McKhann G. et al .
Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under
the auspices of Department of Health and Human Services Task Force on Alzheimer's
Disease.
Neurology.
1984;
34
939-944
- 27
Mintun MA. et al .
[11C]PIB in a nondemented population: poten-tial antecedent marker of Alzheimer disease.
Neurology.
2006;
67
446-452
- 28
Neumann M. et al .
Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral
sclerosis.
Science.
2006;
314
((5796))
130-133
- 29
Ng S. et al .
Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for
detection of Alzheimer's disease.
J Nucl Med.
2007;
48
547-552
- 30
Petersen RC.
Mild cognitive impairment as a diagnostic entity.
J Intern Med.
2004;
256
183-194
- 31
Pike K. et al .
Beta-amyloid imaging and memory in a large cohort of elderly individuals.
J Nucl Med Meeting Abstracts.
2008;
49
((MeetingAbstracts_1))
33P-c-
- 32
Price JC. et al .
Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B.
J Cereb Blood Flow Metab.
2005;
25
1528-1547
- 33
Rabinovici GD. et al .
Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia.
Ann Neurol.
2008;
64
388-401
- 34
Remes AM. et al .
Carbon 11-labeled pittsburgh compound B positron emission tomographic amyloid imaging
in patients with APP locus duplication.
Arch Neurol.
2008;
65
540-544
- 35
Rowe CC. et al .
Imaging beta-amyloid burden in aging and dementia.
Neurology.
2007;
68
1718-1725
- 36
Sadowski M. et al .
Links between the pathology of Alzheimer's disease and vascular dementia.
Neurochem Res.
2004;
29
1257-1266
- 37
Selkoe D.
Folding proteins in fatal ways.
Nature.
2003;
426
((6968))
900-904
- 38
Selkoe D.
Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior.
Behav Brain Res.
2008;
192
106-113
- 39
Shi J. et al .
Histopathological changes underlying frontotemporal lobar degeneration with clinicopathological
correlation.
Acta Neuropathol (Berl).
2005;
110
501-512
- 40
Shoghi-Jadid K. et al .
Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of
living patients with Alzheimer disease.
Am J Geriatr Psychiatry.
2002;
10
24-35
- 41
Silverman DH. et al .
Positron emission tomography in evaluation of dementia: Regional brain metabolism
and long-term outcome.
Jama.
2001;
286
2120-2127
- 42
Small GW. et al .
PET of brain amyloid and tau in mild cognitive impairment.
N Engl J Med.
2006;
355
2652-2663
- 43
Snowden JS.
Semantic dysfunction in frontotemporal lobar degeneration.
Dement Geriatr Cogn Disord.
1999;
10
((Suppl 1))
33-36
- 44
Weisman D. et al .
In dementia with Lewy bodies, Braak stage determines phenotype, not Lewy body distribution.
Neurology.
2007;
69
356-359
- 45
Zaccai J, McCracken C, Brayne C.
A systematic review of prevalence and incidence studies of dementia with Lewy bodies.
Age Ageing.
2005;
34
561-566
Korrespondenzadresse
PD Dr. A. Drzezga
Nuklearmedizinische Klinik
Klinikum rechts der Isar der
Technischen Universität München
Ismaninger Str. 22
81675 München
Phone: +49/89/4140 29 71
Fax: +49/89/4140 48 41
Email: a.drzezga@lrz.tu-muenchen.de