Zusammenfassung
Die Hals-Nasen-Ohrenheilkunde wurde in den vergangenen Jahren durch
zahlreiche Neuentwicklungen auf dem Gebiet der Implantate geprägt, die zum
einen auf innovativen Biomaterialien und zum anderen auf neuen
Implantattechnologien basieren. Dabei müssen die verwendeten
Biomaterialien, weil sie in lebende Systeme integriert werden, neben den
technischen Anforderungen auch den biologischen Wechselwirkungsmechanismen
Rechnung tragen. Im Hinblick auf ihre Eignung sind somit sowohl die technische
Funktionsfähigkeit durch auf das jeweilige Implantat abgestimmte
mechanische Eigenschaften, die ausreichende Stabilität gegenüber
physiologischen Medien als auch eine hohe Biokompatibilität zu fordern.
Das Ziel des Einsatzes von Biomaterialien für Implantate besteht dabei
darin, die Biofunktionalität über möglichst lange Zeiträume
zu erhalten. Diese allgemeinen Anforderungen an Biomaterialien haben
selbstverständlich auch für die Hals-Nasen-Ohrenheilkunde ihre
Gültigkeit. Als Biomaterialien kommen Materialien aus verschiedenen
Werkstoffklassen zum Einsatz. Zu den ältesten, als Biomaterial verwendeten
Werkstoffen zählen Metalle. Außerdem fanden metallische Legierungen,
Keramiken, Gläser oder Verbundwerkstoffe Berücksichtigung.
Weitverbreitet sind darüber hinaus natürliche und synthetische
Polymere, die im vorliegenden Beitrag schwerpunktmäßig hinsichtlich
ihrer Eigenschaften und ihrer Verwendung als Materialien für
Cochleaimplantate, Osteosynthese-Implantate, Stents und Trägerstrukturen
für das Tissue Engineering vorgestellt werden. Bedingt durch ihren Einsatz
als permanente bzw. temporäre Implantate wird dabei in biostabile bzw.
biodegradierbare Polymere unterschieden. Die im vorliegenden Beitrag
aufgezeigten allgemeinen und aktuellen Anforderungen an Biomaterialien und die
dargestellten ausgewählten Biomaterialapplikationen in der
Hals-Nasen-Ohrenheilkunde belegen die Schwerpunkte der aktuellen
Biomaterialforschung in diesem Bereich und verdeutlichen zugleich den hohen
Stellenwert der interdisziplinären Zusammenarbeit zwischen
Naturwissenschaftlern, Ingenieuren und Medizinern.
Abstract
In recent years the ear, nose and throat medicine (ENT medicine) has
been stimulated by numerous innovations in the field of implants which are
based on new biomaterials and modern implant technologies. In this context,
biomaterials integrated in living organisms have to allow for the technical
requirements and the biological interactions between the implant and the
tissue. With regard to their suitability, functional capability of the implant,
which is complementary to the mechanical implant properties, sufficient
stability against physiological media, as well as high biocompatibility are to
be demanded. Another purpose of the use of biomaterials is the maintenance and
the enhancement of biofunctionality over a long time period. These general
requirements for biomaterials also have their validity in ENT medicine.
Different materials are applied as biomaterials. Metals belong to
the oldest biomaterials. In addition, alloys, ceramics, inorganic glasses and
composites were tested. Furthermore, natural and synthetic polymers, which are
primarily presented in this article regarding their properties and their
applications as materials for cochlear implants, osteosynthesis implants,
stents and novel scaffolds for tissue engineering, are increasingly applied.
According to their use in permanent and temporary implants, polymers are to be
differentiated between biostable and biodegradable polymers.
The presented general and current requirements for biomaterials and
biomaterial applications in ENT medicine demonstrate key aspects of the current
biomaterial research in this field. They do as well document the high impact of
the interdisciplinary collaboration of natural and medical scientists and
engineers.
Schlüsselwörter
Biomaterialien - Polymere - Implantate - Hals-Nasen-Ohrenheilkunde
Key words
Biomaterials - polymers - implants - ear, nose and throat medicine
Literatur
- 1
Langer R.
1994 Whitaker Lecture: polymers for drug delivery and tissue
engineering.
Ann Biomed Eng.
1995;
23 (2)
101-111
- 2
Langer R.
Drug delivery and targeting.
Nature.
1998;
392 (6679 Suppl)
5-10
- 3
Langer R.
Biomaterials in drug delivery and tissue engineering: one
laboratory's experience.
Acc Chem Res.
2000;
33 (2)
94-101
- 4
Oberhoff M, Kunert W, Herdeg C. et al .
Inhibition of smooth muscle cell proliferation after local
drug delivery of the antimitotic drug paclitaxel using a porous balloon
catheter.
Basic Res Cardiol.
2001;
96 (3)
275-282
- 5
Paulson D P, Abuzeid W, Jiang H. et al .
A novel controlled local drug delivery system for inner ear
disease.
Laryngoscope.
2008;
118 (4)
706-711
- 6
Seabra A B, da Silva R, de Souza G F, de Oliveira M G.
Antithrombogenic polynitrosated polyester/poly(methyl
methacrylate) blend for the coating of blood-contacting surfaces.
Artif Organs.
2008;
32 (4)
262-267
- 7
Qiu Y, Zhang N, An Y H, Wen X.
Biomaterial strategies to reduce implant-associated
infections.
Int J Artif Organs.
2007;
30 (9)
828-841
- 8
Simmons C A, Alsberg E, Hsiong S, Kim W J, Mooney D J.
Dual growth factor delivery and controlled scaffold
degradation enhance in vivo bone formation by transplanted bone marrow stromal
cells.
Bone.
2004;
35 (2)
562-569
- 9
Liu Y, Li J P, Hunziker E B, de Groot K.
Incorporation of growth factors into medical devices via
biomimetic coatings.
Philos Transact A Math Phys Eng Sci.
2006;
364 (1838)
233-248
- 10 Ratner B D. Biomaterials Science. An Introduction to Materials in
Medicine. 2 ed. Amsterdam; Academic Press 2004
- 11
Lendlein A.
Polymere als Implantatwerkstoffe.
Chemie in unserer Zeit.
1999;
33 (5)
279-295
- 12
Mathur A B, Collier T O, Kao W J.
In vivo biocompatibility and biostability of modified
polyurethanes.
J Biomed Mater Res.
1997;
36 (2)
246-257
- 13
Heumann S, Eberl A, Pobeheim H. et al .
New model substrates for enzymes hydrolysing
polyethyleneterephthalate and polyamide fibres.
J Biochem Biophys Methods.
2006;
69 (1 – 2)
89-99
- 14
King R N, Lyman D J.
Polymers in contact with the body.
Environ Health Perspect.
1975;
11
71-74
- 15
Yasin M, Tighe B J.
Strategies for the design of biodegradable polymer systems:
Manipulation of polyhydroxybutyrate-based materials. Plastics, rubber and
composites processing and applications.
Plast Rubber Composites Process Appl.
1993;
19
15-27
- 16
Malm T, Bowald S, Bylock A, Saldeen T, Busch C.
Regeneration of pericardial tissue on absorbable polymer
patches implanted into the pericardial sac. An immunohistochemical,
ultrastructural and biochemical study in the sheep.
Scand J Thorac Cardiovasc Surg.
1992;
26 (1)
15-21
- 17
Malm T, Bowald S, Bylock A, Busch C.
Prevention of postoperative pericardial adhesions by closure
of the pericardium with absorbable polymer patches. An experimental study.
J Thorac Cardiovasc Surg.
1992;
104 (3)
600-607
- 18
Malm T, Bowald S, Karacagil S, Bylock A, Busch C.
A new biodegradable patch for closure of atrial septal
defect. An experimental study.
Scand J Thorac Cardiovasc Surg.
1992;
26 (1)
9-14
- 19 Heimerl A, Pietsch H, Rademacher K H. et al .Chirurgische Implantate. 1989 EP 000000336148
A2:
- 20
Hazari A, Johansson-Ruden G, Junemo-Bostrom K. et al .
A new resorbable wrap-around implant as an alternative nerve
repair technique.
J Hand Surg [Br].
1999;
24 (3)
291-295
- 21 Fambri L, Bianchetti M, Migliaresi C. et al .Preparation and characterization of
piezoelectric
poly-L-lactide films for electrostimulated tissue regeneration. Proceedings
of
the 15th European Conference on Biomaterials, Bordeaux, Frankreich,. 1999
- 22
Holmes P A.
Applications of PHB – a microbially produced
biodegradable thermoplastic.
Phys Technol.
1985;
16
32-36
- 23
Tsuji T, Tamai H, Igaki K. et al .
Biodegradable Polymeric Stents.
Curr Interv Cardiol Rep.
2001;
3 (1)
10-17
- 24
Tanguay J F, Zidar J P, Phillips H R, Stack R S.
Current status of biodegradable stents.
Cardiol Clin.
1994;
12 (4)
699-713
- 25 Zidar J P, Lincoff A M, Stack R S. Biodegradable stents. Topol EJ (ed)
Textbook of interventional cardiology. Philadelphia; 1994: 787-802
- 26
Van der Giessen W J, Lincoff A M, Schwartz R S. et al .
Marked inflammatory sequelae to implantation of biodegradable
and nonbiodegradable polymers in porcine coronary arteries.
Circulation.
1996;
94 (7)
1690-1697
- 27
Unverdorben M, Spielberger A, Schywalsky M. et al .
A polyhydroxybutyrate biodegradable stent: preliminary
experience in the rabbit.
Cardiovasc Intervent Radiol.
2002;
25 (2)
127-132
- 28
Labinaz M, Zidar J P, Stack R S, Phillips H R.
Biodegradable stents: the future of interventional
cardiology?.
J Interv Cardiol.
1995;
8 (4)
395-405
- 29
Sodian R, Hoerstrup S P, Sperling J S. et al .
Evaluation of biodegradable, three-dimensional matrices for
tissue engineering of heart valves.
ASAIO J.
2000;
46 (1)
107-110
- 30
Grabow N, Schmohl K, Khosravi A. et al .
Mechanical and structural properties of a novel hybrid heart
valve scaffold for tissue engineering.
Artif Organs.
2004;
28 (11)
971-979
- 31
Yang C, Sodian R, Fu P. et al .
In vitro fabrication of a tissue engineered human
cardiovascular patch for future use in cardiovascular surgery.
Ann Thorac Surg.
2006;
81 (1)
57-63
- 32 Williams S F, Martin D P, Gerngross T, Horowitz D M. Polyhydroxyalkanoates for
in vivo applications. 2004 US 020040053381 A1:
- 33 Williams S F, Martin D P, Skraly F. Medical devices and applications of polyhydroxyalkanoate
polymers. 2000 CA 000002368470 A1:
- 34 Schmitz K P, Behrend D, Sternberg K. et al .Polymeric, Degradable Drug-Eluting
Stents and Coatings. 2007 US 020070185561 A1:
- 35 Martin D P, Williams S F. Poly-4-hydroxybutyrate matrices for sustained drug
delivery. 2005 US 020050025809 A1:
- 36
Lenarz T, Lesinski-Schiedat A, Weber B P. et al .
The Nucleus Double Array Cochlear Implant: a new concept in
obliterated cochlea.
Laryngo-Rhino-Otologie.
1999;
78 (8)
421-428
- 37
Miller J M, Le Prell C G, Prieskorn D M, Wys N L, Altschuler R A.
Delayed neurotrophin treatment following deafness rescues
spiral ganglion cells from death and promotes regrowth of auditory nerve
peripheral processes: effects of brain-derived neurotrophic factor and
fibroblast growth factor.
J Neurosci Res.
2007;
85 (9)
1959-1969
- 38
Maruyama J, Miller J M, Ulfendahl M.
Glial cell line-derived neurotrophic factor and antioxidants
preserve the electrical responsiveness of the spiral ganglion neurons after
experimentally induced deafness.
Neurobiol Dis.
2008;
29 (1)
14-21
- 39
Paasche G, Bockel F, Tasche C, Lesinski-Schiedat A, Lenarz T.
Changes of postoperative impedances in cochlear implant
patients: the short-term effects of modified electrode surfaces and
intracochlear corticosteroids.
Otol Neurotol.
2006;
27 (5)
639-647
- 40
Behrend D, Pau H W, Schmidt W, Sternberg K, Schmitz K P.
Klinische und technische Anforderungen an die
Cochlea-Elektrodenentwicklung.
Biomaterialien.
2005;
6 (S1)
14-15
- 41
Sternberg K, Stöver T, Schmohl K, Lenarz T, Schmitz K P.
Functionalization of cochlea-implant surfaces for focused
local pharmacotherapy of the inner ear.
Biomaterialien.
2005;
6 (S1)
50-51
- 42
Pau H W, Just T, Lehnhardt E, Hessel H, Behrend D.
An „endosteal electrode” for cochlear
implantation in cases with residual hearing? Feasibility study: preliminary
temporal bone experiments.
Otol Neurotol.
2005;
26 (3)
448-454
- 43
Pau H W, Just T, Dommerich S, Behrend D.
Temporal bone investigations on landmarks for conventional or
endosteal insertion of cochlear electrodes.
Acta Otolaryngol.
2007;
127 (9) Sep
920-926
- 44
Pau H W, Just T, Dommerich S, Lehnhardt E, Behrend D.
Endosteale Elektrode als neues Konzept eines Cochlea-Implants
bei Restgehör.
Biomaterialien.
2005;
6 (S1)
36-37
- 45 Bärmann M, Stasche N. Das Verhalten von Titan-Osteosynthesen im Mittelgesicht,
91.
Jahrestagung der Vereinigung Südwestdeutscher Hals-Nasen-Ohrenärzte,
13ème Rencontre Régional d'ORL Saar-Lor-Lux,
28. – 29. 9. 2007, Kaiserslautern.
- 46
Acero J, Calderon J, Salmeron J I. et al .
The behaviour of titanium as a biomaterial: microscopy study
of plates and surrounding tissues in facial osteosynthesis.
J Craniomacillofac Surg.
1999;
27 (2)
117-123
- 47
Lin K, Bartelett S, Yaremchuk M.
An experimental study on the effect of rigid fixation on the
developing craniofacial skeleton.
Plast Reconstr Surg.
1991;
87
229-235
- 48
Rosenberg A, Grätz K, Sailer H.
Should titanium miniplates be removed after bone healing is
complete?.
Int J Oral Maxillofac Surg.
1993;
22
185-188
- 49
Suuronen R.
Biodegradable fracture-fixation devices in maxillofacial
surgery.
Int J Oral Maxillofac Surg.
1993;
22
50-57
- 50
Pistner H, Hoppert T, Gutwald R, Mühling J, Reuther J.
Biodegradation von Polylactid-Osteosynthesematerialien im
Langzeitversuch.
Dtsch Z Mund Kiefer GesichtsChir.
1994;
18
50-53
- 51
Kulkarni R K, Pani K C, Neuman C, Leonard F.
Polylactic acid for surgical implants.
Arch Surg.
1966;
93
839-843
- 52
Kramp B, Bernd H E, Schumacher W A. et al .
Polyhydroxybuttersäure (PHB)-Folien und -Platten zur
Defektdeckung des knöchernen Schädels im Kaninchenmodell.
Laryngo-Rhino-Otol.
2002;
81
351-356
- 53
Kunze C, Bernd H E, Androsch R. et al .
In vitro and in vivo studies on blends of isotactic and
atactic poly (3-hydroxybutyrate) for development of a dura substitute
material.
Biomaterials.
2006;
27 (2)
192-201
- 54
Bernd H E, Kunze C, Freier T. et al .
Poly(3-hydroxybutyrate) (PHB) patches for covering anterior
skull base defects – an animal study with minipigs.
Acta Otolaryngol.
2008;
1-8
- 55
Knowles J C, Hastings G W.
In vitro degradation of a PHB/PHV copolymer and a new
technique for monitoring early surface changes.
Biomaterials.
1991;
12
210-214
- 56
Knowles J C, Hastings G W.
In vitro and in vivo investigation of a range of phosphate
glass-reinforced polyhydroxybutyrate-based degradable composites.
Journal of materials science, Materials in medicine.
1993;
4
102-106
- 57
Boeree N R, Dove J, Cooper J J, Knowles J, Hastings G W.
Development of a degradable composite for orthopaedic use:
mechanical evaluation of an hydroxyapatite-polyhydroxybutyrate composite
material.
Biomaterials.
1993;
14
793-796
- 58
Doyle C, Tanner E T, Bonfield W.
In vitro and in vivo evaluation of polyhydroxybutyrate and of
polyhydroxybutyrate reinforced with hydroxyapatite.
Biomaterials.
1991;
12
841-847
- 59
Vainionpää S, Rokkanen P, Törmälä P.
Surgical applications of biodegradable polymers in human
tissues.
Progress in polymer science.
1989;
14
679-716
- 60
Fukada E, Ando Y.
Bending piezoelectricity in a microbially produced
poly-β-hydroxybutyrate.
Biorheology.
1988;
25
297-302
- 61
Knowles J C, Mahmud F A, Hastings G W.
Piezoelectric characteristics of a polyhydroxybutyrate-based
composite.
Clinical materials.
1991;
8
155-158
- 62
Holmes P A.
Applications of PHB – a microbially produced
biodegradable thermoplastic.
Physics in technology.
1985;
16
32-36
- 63
Sousa J E, Serruys P W, Costa M A.
New Frontiers in Cardiology, Drug-Eluting Stents: Part I and
II. (S. 2283 – 2289).
Circulation.
2003;
107
2274-2279
- 64
Regar E, Sianos G, Serruys P W.
Stent development and local drug delivery.
Brit Med Bull.
2001;
59
227-248
- 65
Alexis F, Venkatraman S S, Rath S K, Boey F.
In vitro study of release mechanisms of paclitaxel and
rapamycin from drug-incorporated biodegradable stent matrices.
J Control Release.
2004;
98
67-74
- 66
Sternberg K, Kramer S, Nischan C. et al .
In vitro study of drug-eluting stent coatings based on
poly(L-lactide) incorporating cyclosporine A – drug release, polymer
degradation and mechanical integrity.
J Mater Sci Mater Med.
2007;
18 (7)
1423-1432
- 67
Schmidt W, Sternberg K, Grabow N. et al .
Mikrostents in der Hals-Nasen-Ohrenheilkunde.
Biomaterialien.
2005;
6 (S1)
42-43
- 68 Geißler M, Pau H W, Kramp B. Der Stent im Konzept der modernen Stirnhöhlenchirurgie
– Analyse und Ausblick, 79. Jahresversammlung der Deutschen Gesellschaft
für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie e. V.,
30. 4. – 4. 5. 2008, Bonn.
- 69
Osma U, Cureoglu S, Akbulut N, Meric F, Topcu I.
The results of septal button insertion in the management of
nasal septal perforation.
J Laryngol Otol.
1999;
113
823-824
- 70
Ostwald J, Dommerich S, Nischan C, Kramp B.
In vitro-Kultivierung von Zellen der respiratorischen
Schleimhaut auf Matrizes aus Kollagen, Poly-L-Laktid (PLLA) und
Polyhydroxybuttersäure (PHB).
Laryngo-Rhino-Otologie.
2003;
82
693-699
- 71
Kim C H, Bae J H, Son S. et al .
Use of PLGA scaffold for mucociliary epithelium transfer in
airway reconstruction: a preliminary study.
Acta Otolaryngol.
2006;
126 (6)
594-599
- 72
Bücheler M, Scheffler B, von Foerster U. et al .
Growth of human respiratory epithelium on collagen foil.
Laryngo-Rhino-Otologie.
2000;
79 (3)
160-164
- 73
Yildirim G, Haliloglu T, Sapci T. et al .
Tracheal reconstruction with porous high-density polyethylene
tracheal prosthesis.
Ann Otol Rhinol Laryngol.
2000;
109
981-987
- 74
Suh S W, Kim J, Baek C H, Han J, Kim H.
Replacement of a tracheal defect with autogenous mucosa lined
tracheal prosthesis made from polypropylene mesh.
ASAIO J.
2001;
47 (5)
496-500
- 75
Kaschke O, Gerhardt H J, Bohm K, Wenzel M, Planck H.
Epithelialization of porous biomaterials with isolated
respiratory epithelial cells in vivo.
HNO.
1995;
43
80-88
- 76
Abdulcemal Isik U, Seren E, Kaklikkaya I. et al .
Prosthetic reconstruction of the trachea in rabbit.
J Cardiovasc Surg.
2002;
43
281-286
- 77
Tada Y, Suzuki T, Takezawa T. et al .
Regeneration of tracheal epithelium utilizing a novel
bipotential collagen scaffold.
Ann Otol Rhinol Laryngol.
2008;
17 (5)
359-365
- 78
Yamashita M, Kanemaru S, Hirano S. et al .
Tracheal regeneration after partial resection: a tissue
engineering approach.
Laryngoscope.
2007;
117 (3)
497-502
- 79
Omori K, Nakamura T, Kanemaru S. et al .
Regenerative medicine of the trachea: the first human
case.
Ann Otol Rhinol Laryngol.
2005;
114
429-433
- 80
Dommerich S, Sternberg K, Kramp B, Ostwald J.
Möglichkeiten des Wachstums von respiratorischen
Epithelzellen auf artifiziellen Matrizes.
Biomaterialien.
2005;
6 (S1)
70-71
Priv.-Doz. Dr. rer. nat. Katrin Sternberg
Institut für Biomedizinische
Technik
Universität Rostock
Friedrich-Barnewitz-Straße 4
18119 Rostock
eMail: katrin.sternberg@uni-rostock.de