Semin Neurol 2008; 28(5): 631-644
DOI: 10.1055/s-0028-1105977
© Thieme Medical Publishers

Brain Imaging in Intensive Care Medicine

Robert D. Stevens1 , 2 , 3 , Aliaksei Pustavoitau1 , Julio A. Chalela4
  • 1Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
  • 2Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
  • 3Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
  • 4Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
Further Information

Publication History

Publication Date:
29 December 2008 (online)

ABSTRACT

The management of severe brain injury requires a comprehensive approach in which imaging is an indispensable complement to the clinical and physiological information acquired at the bedside. Neuroimaging methods are routinely used in the diagnosis and prognosis of a broad spectrum of patients with acute neurological dysfunction. With incremental theoretical and technological refinements, imaging modalities are helping to unravel fundamental questions regarding the pathophysiology and neuroplasticity associated with critical neurological injury, and it is anticipated that this knowledge will lead to new and effective therapeutic interventions. We review some of the established and emerging structural and physiological imaging methods, and discuss their applications in patients with critical injuries including trauma and encephalopathy due to anoxia, liver failure, and sepsis.

REFERENCES

  • 1 Ely E W, Shintani A, Truman B et al.. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit.  JAMA. 2004;  291(14) 1753-1762
  • 2 Eidelman L A, Putterman D, Putterman C, Sprung C L. The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities.  JAMA. 1996;  275(6) 470-473
  • 3 Moustafa R R, Baron J C. Clinical review: Imaging in ischaemic stroke–implications for acute management.  Crit Care. 2007;  11(5) 227
  • 4 Sage M R, Wilson A J, Scroop R. Contrast media and the brain. The basis of CT and MR imaging enhancement.  Neuroimaging Clin N Am. 1998;  8(3) 695-707
  • 5 Kidwell C S, Wintermark M. Imaging of intracranial haemorrhage.  Lancet Neurol. 2008;  7(3) 256-267
  • 6 Hathcock J T, Stickle R L. Principles and concepts of computed tomography.  Vet Clin North Am Small Anim Pract. 1993;  23(2) 399-415
  • 7 White S J, Hajnal J V, Young I R, Bydder G M. Use of fluid-attenuated inversion-recovery pulse sequences for imaging the spinal cord.  Magn Reson Med. 1992;  28(1) 153-162
  • 8 Bradley Jr W G. MR appearance of hemorrhage in the brain.  Radiology. 1993;  189(1) 15-26
  • 9 Chalela J A, Kidwell C S, Nentwich L M et al.. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison.  Lancet. 2007;  369(9558) 293-298
  • 10 Kidwell C S, Chalela J A, Saver J L et al.. Comparison of MRI and CT for detection of acute intracerebral hemorrhage.  JAMA. 2004;  292(15) 1823-1830
  • 11 Warach S, Chien D, Li W, Ronthal M, Edelman R R. Fast magnetic resonance diffusion-weighted imaging of acute human stroke.  Neurology. 1992;  42(9) 1717-1723
  • 12 Yokota H, Kurokawa A, Otsuka T, Kobayashi S, Nakazawa S. Significance of magnetic resonance imaging in acute head injury.  J Trauma. 1991;  31(3) 351-357
  • 13 Chalela J A, Wolf R L, Maldjian J A, Kasner S E. MRI identification of early white matter injury in anoxic-ischemic encephalopathy.  Neurology. 2001;  56(4) 481-485
  • 14 Haacke E M, Xu Y, Cheng Y C, Reichenbach J R. Susceptibility weighted imaging (SWI).  Magn Reson Med. 2004;  52(3) 612-618
  • 15 Linfante I, Llinas R H, Caplan L R, Warach S. MRI features of intracerebral hemorrhage within 2 hours from symptom onset.  Stroke. 1999;  30(11) 2263-2267
  • 16 de Souza J M, Domingues R C, Cruz Jr L C et al.. Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with T2-weighted fast spin-echo and gradient-echo sequences.  AJNR Am J Neuroradiol. 2008;  29(1) 154-158
  • 17 Idbaih A, Boukobza M, Crassard I et al.. MRI of clot in cerebral venous thrombosis: high diagnostic value of susceptibility-weighted images.  Stroke. 2006;  37(4) 991-995
  • 18 Sundgren P C, Dong Q, Gomez-Hassan D et al.. Diffusion tensor imaging of the brain: review of clinical applications.  Neuroradiology. 2004;  46(5) 339-350
  • 19 Le Bihan D, Mangin J F, Poupon C et al.. Diffusion tensor imaging: concepts and applications.  J Magn Reson Imaging. 2001;  13(4) 534-546
  • 20 Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research.  Neuron. 2006;  51(5) 527-539
  • 21 Mori S, Crain B J. MRI Atlas of Human White Matter. 1st ed. Amsterdam/Boston; Elsevier 2005
  • 22 Mukherjee P, Bahn M M, McKinstry R C et al.. Differences between gray matter and white matter water diffusion in stroke: diffusion-tensor MR imaging in 12 patients.  Radiology. 2000;  215(1) 211-220
  • 23 Hsieh C T, Chen C Y, Chiang Y H, Chang C H, Chang C F. Role of diffusion tensor imaging in a patient with spontaneous intracerebral hematoma treated by stereotactic evacuation.  Surg Neurol. 2008;  70(1) 75-78
  • 24 Arfanakis K, Haughton V M, Carew J D et al.. Diffusion tensor MR imaging in diffuse axonal injury.  AJNR Am J Neuroradiol. 2002;  23(5) 794-802
  • 25 Kim D S, Garwood M. High-field magnetic resonance techniques for brain research.  Curr Opin Neurobiol. 2003;  13(5) 612-619
  • 26 Nakada T. Clinical application of high and ultra high-field MRI.  Brain Dev. 2007;  29(6) 325-335
  • 27 Wintermark M, Sesay M, Barbier E et al.. Comparative overview of brain perfusion imaging techniques.  Stroke. 2005;  36(9) e83-e99
  • 28 Kety S S, Schmidt C F. The nitrous oxide method for the quantitative determination of cerebral blood flow in man; theory, procedure and normal values.  J Clin Invest. 1948;  27(4) 476-483
  • 29 Coles J P. Regional ischemia after head injury.  Curr Opin Crit Care. 2004;  10(2) 120-125
  • 30 Powers W J, Zazulia A R. The use of positron emission tomography in cerebrovascular disease.  Neuroimaging Clin N Am. 2003;  13(4) 741-758
  • 31 Lewis D H. Functional brain imaging with cerebral perfusion SPECT in cerebrovascular disease, epilepsy, and trauma.  Neurosurg Clin N Am. 1997;  8(3) 337-344
  • 32 Ackerman R H, Correia J A, Alpert N M et al.. Positron imaging in ischemic stroke disease using compounds labeled with oxygen 15. Initial results of clinicophysiologic correlations.  Arch Neurol. 1981;  38(9) 537-543
  • 33 Zazulia A R, Diringer M N, Videen T O et al.. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage.  J Cereb Blood Flow Metab. 2001;  21(7) 804-810
  • 34 Minhas P S, Menon D K, Smielewski P et al.. Positron emission tomographic cerebral perfusion disturbances and transcranial Doppler findings among patients with neurological deterioration after subarachnoid hemorrhage.  Neurosurgery. 2003;  52(5) 1017-1022 discussion 1022-1014
  • 35 Coles J P, Minhas P S, Fryer T D et al.. Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates.  Crit Care Med. 2002;  30(9) 1950-1959
  • 36 Coles J P, Fryer T D, Coleman M R et al.. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism.  Crit Care Med. 2007;  35(2) 568-578
  • 37 Diringer M N, Videen T O, Yundt K et al.. Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury.  J Neurosurg. 2002;  96(1) 103-108
  • 38 Diringer M N, Aiyagari V, Zazulia A R, Videen T O, Powers W J. Effect of hyperoxia on cerebral metabolic rate for oxygen measured using positron emission tomography in patients with acute severe head injury.  J Neurosurg. 2007;  106(4) 526-529
  • 39 Menon D K, Coles J P, Gupta A K et al.. Diffusion limited oxygen delivery following head injury.  Crit Care Med. 2004;  32(6) 1384-1390
  • 40 Lockwood A H. Positron emission tomography in the study of hepatic encephalopathy.  Metab Brain Dis. 2002;  17(4) 431-435
  • 41 Edgren E, Enblad P, Grenvik A et al.. Cerebral blood flow and metabolism after cardiopulmonary resuscitation. A pathophysiologic and prognostic positron emission tomography pilot study.  Resuscitation. 2003;  57(2) 161-170
  • 42 Warwick J M. Imaging of brain function using SPECT.  Metab Brain Dis. 2004;  19(1–2) 113-123
  • 43 Vorstrup S, Hemmingsen R, Henriksen L et al.. Regional cerebral blood flow in patients with transient ischemic attacks studied by xenon-133 inhalation and emission tomography.  Stroke. 1983;  14(6) 903-910
  • 44 Ito H, Ishii K, Onuma T, Kawashima R, Fukuda H. Cerebral perfusion changes in traumatic diffuse brain injury; IMP SPECT studies.  Ann Nucl Med. 1997;  11(2) 167-172
  • 45 Leclerc X, Fichten A, Gauvrit J Y et al.. Symptomatic vasospasm after subarachnoid haemorrhage: assessment of brain damage by diffusion and perfusion-weighted MRI and single-photon emission computed tomography.  Neuroradiology. 2002;  44(7) 610-616
  • 46 Nakagawa Y, Matsumura K, Iwasa M et al.. Single photon emission computed tomography and statistical parametric mapping analysis in cirrhotic patients with and without minimal hepatic encephalopathy.  Ann Nucl Med. 2004;  18(2) 123-129
  • 47 Bonte F J, Devous Sr M D, Stokely E M, Homan R W. Single-photon tomographic determination of regional cerebral blood flow in epilepsy.  AJNR Am J Neuroradiol. 1983;  4(3) 544-546
  • 48 Drayer B P, Wolfson S K, Reinmuth O M et al.. Xenon enhanced CT for analysis of cerebral integrity, perfusion, and blood flow.  Stroke. 1978;  9(2) 123-130
  • 49 Olsen T S, Larsen B, Skriver E B et al.. Focal cerebral hyperemia in acute stroke. Incidence, pathophysiology and clinical significance.  Stroke. 1981;  12(5) 598-607
  • 50 Fukui M B, Johnson D W, Yonas H et al.. Xe/CT cerebral blood flow evaluation of delayed symptomatic cerebral ischemia after subarachnoid hemorrhage.  AJNR Am J Neuroradiol. 1992;  13(1) 265-270
  • 51 Schroder M L, Muizelaar J P, Bullock M R, Salvant J B, Povlishock J T. Focal ischemia due to traumatic contusions documented by stable xenon-CT and ultrastructural studies.  J Neurosurg. 1995;  82(6) 966-971
  • 52 Furuya Y, Hlatky R, Valadka A B, Diaz P, Robertson C S. Comparison of cerebral blood flow in computed tomographic hypodense areas of the brain in head-injured patients.  Neurosurgery. 2003;  52(2) 340-345 discussion 345-346
  • 53 Bouma G J, Muizelaar J P, Stringer W A et al.. Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography.  J Neurosurg. 1992;  77(3) 360-368
  • 54 Hoeffner E G, Case I, Jain R et al.. Cerebral perfusion CT: technique and clinical applications.  Radiology. 2004;  231(3) 632-644
  • 55 Meier P, Zierler K L. On the theory of the indicator-dilution method for measurement of blood flow and volume.  J Appl Physiol. 1954;  6(12) 731-744
  • 56 Wintermark M, Fischbein N J, Smith W S et al.. Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke.  AJNR Am J Neuroradiol. 2005;  26(1) 104-112
  • 57 Wintermark M, Thiran J P, Maeder P, Schnyder P, Meuli R. Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study.  AJNR Am J Neuroradiol. 2001;  22(5) 905-914
  • 58 Nabavi D G, Cenic A, Craen R A et al.. CT assessment of cerebral perfusion: experimental validation and initial clinical experience.  Radiology. 1999;  213(1) 141-149
  • 59 Schramm P, Schellinger P D, Klotz E et al.. Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours' duration.  Stroke. 2004;  35(7) 1652-1658
  • 60 Wintermark M, Flanders A E, Velthuis B et al.. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke.  Stroke. 2006;  37(4) 979-985
  • 61 Tan J C, Dillon W P, Liu S et al.. Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients.  Ann Neurol. 2007;  61(6) 533-543
  • 62 Wintermark M, Reichhart M, Cuisenaire O et al.. Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients.  Stroke. 2002;  33(8) 2025-2031
  • 63 Wintermark M, van Melle G, Schnyder P et al.. Admission perfusion CT: prognostic value in patients with severe head trauma.  Radiology. 2004;  232(1) 211-220
  • 64 Pham M, Johnson A, Bartsch A J et al.. CT perfusion predicts secondary cerebral infarction after aneurysmal subarachnoid hemorrhage.  Neurology. 2007;  69(8) 762-765
  • 65 Edelman R R, Mattle H P, Atkinson D J et al.. Cerebral blood flow: assessment with dynamic contrast-enhanced T2*-weighted MR imaging at 1.5 T.  Radiology. 1990;  176(1) 211-220
  • 66 Kiselev V G. On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI.  Magn Reson Med. 2001;  46(6) 1113-1122
  • 67 Kajimoto K, Moriwaki H, Yamada N et al.. Cerebral hemodynamic evaluation using perfusion-weighted magnetic resonance imaging: comparison with positron emission tomography values in chronic occlusive carotid disease.  Stroke. 2003;  34(7) 1662-1666
  • 68 Takasawa M, Jones P S, Guadagno J V et al.. How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET.  Stroke. 2008;  39(3) 870-877
  • 69 Bammer R. Basic principles of diffusion-weighted imaging.  Eur J Radiol. 2003;  45(3) 169-184
  • 70 Warach S, Gaa J, Siewert B, Wielopolski P, Edelman R R. Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging.  Ann Neurol. 1995;  37(2) 231-241
  • 71 Lovblad K O, Baird A E, Schlaug G et al.. Ischemic lesion volumes in acute stroke by diffusion-weighted magnetic resonance imaging correlate with clinical outcome.  Ann Neurol. 1997;  42(2) 164-170
  • 72 Karonen J O, Vanninen R L, Liu Y et al.. Combined diffusion and perfusion MRI with correlation to single-photon emission CT in acute ischemic stroke. Ischemic penumbra predicts infarct growth.  Stroke. 1999;  30(8) 1583-1590
  • 73 Neumann-Haefelin T, Wittsack H J, Wenserski F et al.. Diffusion- and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke.  Stroke. 1999;  30(8) 1591-1597
  • 74 Schlaug G, Benfield A, Baird A E et al.. The ischemic penumbra: operationally defined by diffusion and perfusion MRI.  Neurology. 1999;  53(7) 1528-1537
  • 75 Baird A E, Lovblad K O, Dashe J F et al.. Clinical correlations of diffusion and perfusion lesion volumes in acute ischemic stroke.  Cerebrovasc Dis. 2000;  10(6) 441-448
  • 76 Butcher K S, Parsons M, MacGregor L et al.. Refining the perfusion-diffusion mismatch hypothesis.  Stroke. 2005;  36(6) 1153-1159
  • 77 Meng X, Fisher M, Shen Q, Sotak C H, Duong T Q. Characterizing the diffusion/perfusion mismatch in experimental focal cerebral ischemia.  Ann Neurol. 2004;  55(2) 207-212
  • 78 Williams D S, Detre J A, Leigh J S, Koretsky A P. Magnetic resonance imaging of perfusion using spin inversion of arterial water.  Proc Natl Acad Sci U S A. 1992;  89(1) 212-216
  • 79 Ye F Q, Berman K F, Ellmore T et al.. H(2)(15)O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans.  Magn Reson Med. 2000;  44(3) 450-456
  • 80 Parkes L M, Rashid W, Chard D T, Tofts P S. Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects.  Magn Reson Med. 2004;  51(4) 736-743
  • 81 Chalela J A, Alsop D C, Gonzalez-Atavales J B et al.. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling.  Stroke. 2000;  31(3) 680-687
  • 82 Kimura H, Kado H, Koshimoto Y et al.. Multislice continuous arterial spin-labeled perfusion MRI in patients with chronic occlusive cerebrovascular disease: a correlative study with CO2 PET validation.  J Magn Reson Imaging. 2005;  22(2) 189-198
  • 83 Wolf R L, Alsop D C, Levy-Reis I et al.. Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging.  AJNR Am J Neuroradiol. 2001;  22(7) 1334-1341
  • 84 Forbes M L, Hendrich K S, Kochanek P M et al.. Assessment of cerebral blood flow and CO2 reactivity after controlled cortical impact by perfusion magnetic resonance imaging using arterial spin-labeling in rats.  J Cereb Blood Flow Metab. 1997;  17(8) 865-874
  • 85 Van Zijl P C, Barker P B. Magnetic resonance spectroscopy and spectroscopic imaging for the study of brain metabolism.  Ann N Y Acad Sci. 1997;  820 75-96
  • 86 Haseler L J, Sibbitt Jr W L, Mojtahedzadeh H N et al.. Proton MR spectroscopic measurement of neurometabolites in hepatic encephalopathy during oral lactulose therapy.  AJNR Am J Neuroradiol. 1998;  19(9) 1681-1686
  • 87 Breiter S N, Arroyo S, Mathews V P et al.. Proton MR spectroscopy in patients with seizure disorders.  AJNR Am J Neuroradiol. 1994;  15(2) 373-384
  • 88 Garnett M R, Blamire A M, Rajagopalan B, Styles P, Cadoux-Hudson T A. Evidence for cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: a magnetic resonance spectroscopy study.  Brain. 2000;  123(Pt 7) 1403-1409
  • 89 Vink R, McIntosh T K, Weiner M W, Faden A I. Effects of traumatic brain injury on cerebral high-energy phosphates and pH: a 31P magnetic resonance spectroscopy study.  J Cereb Blood Flow Metab. 1987;  7(5) 563-571
  • 90 Logothetis N K. What we can do and what we cannot do with fMRI.  Nature. 2008;  453(7197) 869-878
  • 91 Li T Q, Haefelin T N, Chan B et al.. Assessment of hemodynamic response during focal neural activity in human using bolus tracking, arterial spin labeling and BOLD techniques.  Neuroimage. 2000;  12(4) 442-451
  • 92 Lu H, Golay X, Pekar J J, Van Zijl P C. Functional magnetic resonance imaging based on changes in vascular space occupancy.  Magn Reson Med. 2003;  50(2) 263-274
  • 93 Ogawa S, Lee T M, Kay A R, Tank D W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation.  Proc Natl Acad Sci U S A. 1990;  87(24) 9868-9872
  • 94 Le Bihan D, Urayama S, Aso T, Hanakawa T, Fukuyama H. Direct and fast detection of neuronal activation in the human brain with diffusion MRI.  Proc Natl Acad Sci U S A. 2006;  103(21) 8263-8268
  • 95 Logothetis N K, Wandell B A. Interpreting the BOLD signal.  Annu Rev Physiol. 2004;  66 735-769
  • 96 Damoiseaux J S, Rombouts S A, Barkhof F et al.. Consistent resting-state networks across healthy subjects.  Proc Natl Acad Sci U S A. 2006;  103(37) 13848-13853
  • 97 Fox M D, Raichle M E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging.  Nat Rev Neurosci. 2007;  8(9) 700-711
  • 98 Greicius M D, Supekar K, Menon V, Dougherty R F. Resting-state functional connectivity reflects structural connectivity in the default mode network.  Cereb Cortex. 2008 Apr 9;  , (Epub ahead of print)
  • 99 Rocca M A, Pagani E, Absinta M et al.. Altered functional and structural connectivities in patients with MS: a 3-T study.  Neurology. 2007;  69(23) 2136-2145
  • 100 Upadhyay J, Silver A, Knaus T A et al.. Effective and structural connectivity in the human auditory cortex.  J Neurosci. 2008;  28(13) 3341-3349
  • 101 Stippich C, Blatow M. Clinical Functional MRI: Presurgical Functional Neuroimaging. Berlin/New York; Springer 2007: 268
  • 102 Dijkhuizen R M, Ren J, Mandeville J B et al.. Functional magnetic resonance imaging of reorganization in rat brain after stroke.  Proc Natl Acad Sci U S A. 2001;  98(22) 12766-12771
  • 103 Grefkes C, Nowak D A, Eickhoff S B et al.. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging.  Ann Neurol. 2008;  63(2) 236-246
  • 104 Mani T M, Miller L S, Yanasak N, Macciocchi S. Evaluation of changes in motor and visual functional activation over time following moderate-to-severe brain injury.  Brain Inj. 2007;  21(11) 1155-1163
  • 105 McAllister T W, Saykin A J, Flashman L A et al.. Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study.  Neurology. 1999;  53(6) 1300-1308
  • 106 Coleman M R, Rodd J M, Davis M H et al.. Do vegetative patients retain aspects of language comprehension? Evidence from fMRI.  Brain. 2007;  130(Pt 10) 2494-2507
  • 107 Schiff N D, Rodriguez-Moreno D, Kamal A et al.. fMRI reveals large-scale network activation in minimally conscious patients.  Neurology. 2005;  64(3) 514-523
  • 108 Stiell I G, Lesiuk H, Wells G A et al.. Canadian CT head rule study for patients with minor head injury: methodology for phase II (validation and economic analysis).  Ann Emerg Med. 2001;  38(3) 317-322
  • 109 Stiell I G, Lesiuk H, Wells G A et al.. The Canadian CT Head Rule Study for patients with minor head injury: rationale, objectives, and methodology for phase I (derivation).  Ann Emerg Med. 2001;  38(2) 160-169
  • 110 Haydel M J, Preston C A, Mills T J et al.. Indications for computed tomography in patients with minor head injury.  N Engl J Med. 2000;  343(2) 100-105
  • 111 Yates D, Aktar R, Hill J. Assessment, investigation, and early management of head injury: summary of NICE guidance.  BMJ. 2007;  335(7622) 719-720
  • 112 Stiell I G, Clement C M, Rowe B H et al.. Comparison of the Canadian CT Head Rule and the New Orleans Criteria in patients with minor head injury.  JAMA. 2005;  294(12) 1511-1518
  • 113 Gentry L R, Thompson B, Godersky J C. Trauma to the corpus callosum: MR features.  AJNR Am J Neuroradiol. 1988;  9(6) 1129-1138
  • 114 Gentry L R, Godersky J C, Thompson B, Dunn V D. Prospective comparative study of intermediate-field MR and CT in the evaluation of closed head trauma.  AJR Am J Roentgenol. 1988;  150(3) 673-682
  • 115 Gentry L R, Godersky J C, Thompson B H. Traumatic brain stem injury: MR imaging.  Radiology. 1989;  171(1) 177-187
  • 116 Mittl R L, Grossman R I, Hiehle J F et al.. Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury and normal head CT findings.  AJNR Am J Neuroradiol. 1994;  15(8) 1583-1589
  • 117 Ezaki Y, Tsutsumi K, Morikawa M, Nagata I. Role of diffusion-weighted magnetic resonance imaging in diffuse axonal injury.  Acta Radiol. 2006;  47(7) 733-740
  • 118 Okanishi T, Saito Y, Fujii S et al.. Low signal intensity and increased anisotropy on magnetic resonance imaging in the white matter lesion after head trauma: unrecognized findings of diffuse axonal injury.  J Neurol Sci. 2007;  263(1–2) 218-222
  • 119 Meythaler J M, Peduzzi J D, Eleftheriou E, Novack T A. Current concepts: diffuse axonal injury-associated traumatic brain injury.  Arch Phys Med Rehabil. 2001;  82(10) 1461-1471
  • 120 Ashikaga R, Araki Y, Ishida O. MRI of head injury using FLAIR.  Neuroradiology. 1997;  39(4) 239-242
  • 121 Scheid R, Preul C, Gruber O, Wiggins C, von Cramon D Y. Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2*-weighted gradient-echo imaging at 3 T.  AJNR Am J Neuroradiol. 2003;  24(6) 1049-1056
  • 122 Ashwal S, Holshouser B A, Tong K A. Use of advanced neuroimaging techniques in the evaluation of pediatric traumatic brain injury.  Dev Neurosci. 2006;  28(4–5) 309-326
  • 123 Tong K A, Ashwal S, Holshouser B A et al.. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results.  Radiology. 2003;  227(2) 332-339
  • 124 Tong K A, Ashwal S, Holshouser B A et al.. Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions.  Ann Neurol. 2004;  56(1) 36-50
  • 125 Goetz P, Blamire A, Rajagopalan B et al.. Increase in apparent diffusion coefficient in normal appearing white matter following human traumatic brain injury correlates with injury severity.  J Neurotrauma. 2004;  21(6) 645-654
  • 126 Huisman T A, Sorensen A G, Hergan K, Gonzalez R G, Schaefer P W. Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury.  J Comput Assist Tomogr. 2003;  27(1) 5-11
  • 127 Hergan K, Schaefer P W, Sorensen A G, Gonzalez R G, Huisman T A. Diffusion-weighted MRI in diffuse axonal injury of the brain.  Eur Radiol. 2002;  12(10) 2536-2541
  • 128 Liu A Y, Maldjian J A, Bagley L J, Sinson G P, Grossman R I. Traumatic brain injury: diffusion-weighted MR imaging findings.  AJNR Am J Neuroradiol. 1999;  20(9) 1636-1641
  • 129 Xu J, Rasmussen I A, Lagopoulos J, Haberg A. Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging.  J Neurotrauma. 2007;  24(5) 753-765
  • 130 Huisman T A, Schwamm L H, Schaefer P W et al.. Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury.  AJNR Am J Neuroradiol. 2004;  25(3) 370-376
  • 131 Sidaros A, Engberg A W, Sidaros K et al.. Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study.  Brain. 2008;  131(Pt 2) 559-572
  • 132 Coles J P. Imaging after brain injury.  Br J Anaesth. 2007;  99(1) 49-60
  • 133 Diringer M N, Yundt K, Videen T O et al.. No reduction in cerebral metabolism as a result of early moderate hyperventilation following severe traumatic brain injury.  J Neurosurg. 2000;  92(1) 7-13
  • 134 Steiner L A, Balestreri M, Johnston A J et al.. Effects of moderate hyperventilation on cerebrovascular pressure-reactivity after head injury.  Acta Neurochir Suppl. 2005;  95 17-20
  • 135 Nortje J, Coles J P, Timofeev I et al.. Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings.  Crit Care Med. 2008;  36(1) 273-281
  • 136 Johnston A J, Steiner L A, Coles J P et al.. Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury.  Crit Care Med. 2005;  33(1) 189-195 discussion 255-187
  • 137 McLaughlin M R, Marion D W. Cerebral blood flow and vasoresponsivity within and around cerebral contusions.  J Neurosurg. 1996;  85(5) 871-876
  • 138 von Oettingen G, Bergholt B, Gyldensted C, Astrup J. Blood flow and ischemia within traumatic cerebral contusions.  Neurosurgery. 2002;  50(4) 781-788 discussion 788-790
  • 139 Inoue Y, Shiozaki T, Tasaki O et al.. Changes in cerebral blood flow from the acute to the chronic phase of severe head injury.  J Neurotrauma. 2005;  22(12) 1411-1418
  • 140 Lewine J D, Davis J T, Bigler E D et al.. Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI.  J Head Trauma Rehabil. 2007;  22(3) 141-155
  • 141 Cunningham A S, Salvador R, Coles J P et al.. Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury.  Brain. 2005;  128(Pt 8) 1931-1942
  • 142 Vespa P, McArthur D L, Alger J et al.. Regional heterogeneity of post-traumatic brain metabolism as studied by microdialysis, magnetic resonance spectroscopy and positron emission tomography.  Brain Pathol. 2004;  14(2) 210-214
  • 143 Coles J P, Fryer T D, Smielewski P et al.. Incidence and mechanisms of cerebral ischemia in early clinical head injury.  J Cereb Blood Flow Metab. 2004;  24(2) 202-211
  • 144 Abate M G, Trivedi M, Fryer T D et al.. Early derangements in oxygen and glucose metabolism following head injury: the ischemic penumbra and pathophysiological heterogeneity.  Neurocrit Care. 2008;  , June 19 (Epub ahead of print)
  • 145 Gupta A K, Hutchinson P J, Fryer T et al.. Measurement of brain tissue oxygenation performed using positron emission tomography scanning to validate a novel monitoring method.  J Neurosurg. 2002;  96(2) 263-268
  • 146 Steiner L A, Coles J P, Johnston A J et al.. Responses of posttraumatic pericontusional cerebral blood flow and blood volume to an increase in cerebral perfusion pressure.  J Cereb Blood Flow Metab. 2003;  23(11) 1371-1377
  • 147 Schiff N D, Ribary U, Moreno D R et al.. Residual cerebral activity and behavioural fragments can remain in the persistently vegetative brain.  Brain. 2002;  125(Pt 6) 1210-1234
  • 148 Wintermark M, Chiolero R, van Melle G et al.. Relationship between brain perfusion computed tomography variables and cerebral perfusion pressure in severe head trauma patients.  Crit Care Med. 2004;  32(7) 1579-1587
  • 149 Wintermark M, Chiolero R, Van Melle G et al.. Cerebral vascular autoregulation assessed by perfusion-CT in severe head trauma patients.  J Neuroradiol. 2006;  33(1) 27-37
  • 150 Soustiel J F, Mahamid E, Goldsher D, Zaaroor M. Perfusion-CT for early assessment of traumatic cerebral contusions.  Neuroradiology. 2008;  50(2) 189-196
  • 151 Hemphill III J C, Smith W S, Sonne D C, Morabito D, Manley G T. Relationship between brain tissue oxygen tension and CT perfusion: feasibility and initial results.  AJNR Am J Neuroradiol. 2005;  26(5) 1095-1100
  • 152 Garnett M R, Blamire A M, Corkill R G et al.. Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury.  Brain. 2000;  123(Pt 10) 2046-2054
  • 153 Signoretti S, Marmarou A, Aygok G A et al.. Assessment of mitochondrial impairment in traumatic brain injury using high-resolution proton magnetic resonance spectroscopy.  J Neurosurg. 2008;  108(1) 42-52
  • 154 Holshouser B A, Tong K A, Ashwal S. Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury.  AJNR Am J Neuroradiol. 2005;  26(5) 1276-1285
  • 155 Son B C, Park C K, Choi B G et al.. Metabolic changes in pericontusional oedematous areas in mild head injury evaluated by 1H MRS.  Acta Neurochir Suppl. 2000;  76 13-16
  • 156 Cecil K M, Hills E C, Sandel M E et al.. Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients.  J Neurosurg. 1998;  88(5) 795-801
  • 157 Schuhmann M U, Stiller D, Skardelly M et al.. Metabolic changes in the vicinity of brain contusions: a proton magnetic resonance spectroscopy and histology study.  J Neurotrauma. 2003;  20(8) 725-743
  • 158 Scheibel R S, Pearson D A, Faria L P et al.. An fMRI study of executive functioning after severe diffuse TBI.  Brain Inj. 2003;  17(11) 919-930
  • 159 Soeda A, Nakashima T, Okumura A et al.. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task.  Neuroradiology. 2005;  47(7) 501-506
  • 160 Newsome M R, Scheibel R S, Steinberg J L et al.. Working memory brain activation following severe traumatic brain injury.  Cortex. 2007;  43(1) 95-111
  • 161 Moores K A, Clark C R, McFarlane A C et al.. Abnormal recruitment of working memory updating networks during maintenance of trauma-neutral information in post-traumatic stress disorder.  Psychiatry Res. 2008;  163(2) 156-170
  • 162 Hillary F G, Steffener J, Biswal B B et al.. Functional magnetic resonance imaging technology and traumatic brain injury rehabilitation: guidelines for methodological and conceptual pitfalls.  J Head Trauma Rehabil. 2002;  17(5) 411-430
  • 163 Torbey M T, Selim M, Knorr J, Bigelow C, Recht L. Quantitative analysis of the loss of distinction between gray and white matter in comatose patients after cardiac arrest.  Stroke. 2000;  31(9) 2163-2167
  • 164 Arbelaez A, Castillo M, Mukherji S K. Diffusion-weighted MR imaging of global cerebral anoxia.  AJNR Am J Neuroradiol. 1999;  20(6) 999-1007
  • 165 Takahashi S, Higano S, Ishii K et al.. Hypoxic brain damage: cortical laminar necrosis and delayed changes in white matter at sequential MR imaging.  Radiology. 1993;  189(2) 449-556
  • 166 Weiss N, Galanaud D, Carpentier A, Naccache L, Puybasset L. Clinical review: prognostic value of magnetic resonance imaging in acute brain injury and coma.  Crit Care. 2007;  11(5) 230
  • 167 Rupright J, Woods E A, Singh A. Hypoxic brain injury: evaluation by single photon emission computed tomography.  Arch Phys Med Rehabil. 1996;  77(11) 1205-1208
  • 168 Graham S H, Meyerhoff D J, Bayne L, Sharp F R, Weiner M W. Magnetic resonance spectroscopy of N-acetylaspartate in hypoxic-ischemic encephalopathy.  Ann Neurol. 1994;  35(4) 490-494
  • 169 Wartenberg K E, Patsalides A, Yepes M S. Is magnetic resonance spectroscopy superior to conventional diagnostic tools in hypoxic-ischemic encephalopathy?.  J Neuroimaging. 2004;  14(2) 180-186
  • 170 Hanrahan J D, Sargentoni J, Azzopardi D et al.. Cerebral metabolism within 18 hours of birth asphyxia: a proton magnetic resonance spectroscopy study.  Pediatr Res. 1996;  39(4 Pt 1) 584-590
  • 171 Cordoba J, Minguez B. Hepatic encephalopathy.  Semin Liver Dis. 2008;  28(1) 70-80
  • 172 Zeneroli M L, Cioni G, Crisi G, Vezzelli C, Ventura E. Globus pallidus alterations and brain atrophy in liver cirrhosis patients with encephalopathy: an MR imaging study.  Magn Reson Imaging. 1991;  9(3) 295-302
  • 173 Rovira A, Cordoba J, Sanpedro F et al.. Normalization of T2 signal abnormalities in hemispheric white matter with liver transplant.  Neurology. 2002;  59(3) 335-341
  • 174 Lodi R, Tonon C, Stracciari A et al.. Diffusion MRI shows increased water apparent diffusion coefficient in the brains of cirrhotics.  Neurology. 2004;  62(5) 762-766
  • 175 Kale R A, Gupta R K, Saraswat V A et al.. Demonstration of interstitial cerebral edema with diffusion tensor MR imaging in type C hepatic encephalopathy.  Hepatology. 2006;  43(4) 698-706
  • 176 Munoz S J, Robinson M, Northrup B et al.. Elevated intracranial pressure and computed tomography of the brain in fulminant hepatocellular failure.  Hepatology. 1991;  13(2) 209-212
  • 177 Osborn A G. Diagnostic Imaging: Brain. 1st ed. Salt Lake City, UT; Amirsys 2004
  • 178 Ranjan P, Mishra A M, Kale R, Saraswat V A, Gupta R K. Cytotoxic edema is responsible for raised intracranial pressure in fulminant hepatic failure: in vivo demonstration using diffusion-weighted MRI in human subjects.  Metab Brain Dis. 2005;  20(3) 181-192
  • 179 Saraswat V A, Saksena S, Nath K et al.. Evaluation of mannitol effect in patients with acute hepatic failure and acute-on-chronic liver failure using conventional MRI, diffusion tensor imaging and in-vivo proton MR spectroscopy.  World J Gastroenterol. 2008;  14(26) 4168-4178
  • 180 Lockwood A H, Weissenborn K, Bokemeyer M, Tietge U, Burchert W. Correlations between cerebral glucose metabolism and neuropsychological test performance in nonalcoholic cirrhotics.  Metab Brain Dis. 2002;  17(1) 29-40
  • 181 Lockwood A H, Yap E W, Rhoades H M, Wong W H. Altered cerebral blood flow and glucose metabolism in patients with liver disease and minimal encephalopathy.  J Cereb Blood Flow Metab. 1991;  11(2) 331-336
  • 182 Lockwood A H, McDonald J M, Reiman R E et al.. The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia.  J Clin Invest. 1979;  63(3) 449-460
  • 183 Cagnin A, Taylor-Robinson S D, Forton D M, Banati R B. In vivo imaging of cerebral “peripheral benzodiazepine binding sites” in patients with hepatic encephalopathy.  Gut. 2006;  55(4) 547-553
  • 184 Catafau A M, Kulisevsky J, Berna L et al.. Relationship between cerebral perfusion in frontal-limbic-basal ganglia circuits and neuropsychologic impairment in patients with subclinical hepatic encephalopathy.  J Nucl Med. 2000;  41(3) 405-410
  • 185 Butterworth R F. Pathogenesis of hepatic encephalopathy: new insights from neuroimaging and molecular studies.  J Hepatol. 2003;  39(2) 278-285
  • 186 Haussinger D, Laubenberger J, vom Dahl S et al.. Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy.  Gastroenterology. 1994;  107(5) 1475-1480
  • 187 Miese F, Kircheis G, Wittsack H J et al.. 1H-MR spectroscopy, magnetization transfer, and diffusion-weighted imaging in alcoholic and nonalcoholic patients with cirrhosis with hepatic encephalopathy.  AJNR Am J Neuroradiol. 2006;  27(5) 1019-1026
  • 188 Naegele T, Grodd W, Viebahn R et al.. MR imaging and (1)H spectroscopy of brain metabolites in hepatic encephalopathy: time-course of renormalization after liver transplantation.  Radiology. 2000;  216(3) 683-691
  • 189 Zwingmann C, Chatauret N, Leibfritz D, Butterworth R F. Selective increase of brain lactate synthesis in experimental acute liver failure: results of a H-C nuclear magnetic resonance study.  Hepatology. 2003;  37(2) 420-428
  • 190 Kanamori K, Parivar F, Ross B D. A 15N NMR study of in vivo cerebral glutamine synthesis in hyperammonemic rats.  NMR Biomed. 1993;  6(1) 21-26
  • 191 Kanamori K, Ross B D. Kinetics of glial glutamine efflux and the mechanism of neuronal uptake studied in vivo in mildly hyperammonemic rat brain.  J Neurochem. 2006;  99(4) 1103-1113
  • 192 Zafiris O, Kircheis G, Rood H A et al.. Neural mechanism underlying impaired visual judgement in the dysmetabolic brain: an fMRI study.  Neuroimage. 2004;  22(2) 541-552
  • 193 Zhang L J, Yang G, Yin J, Liu Y, Qi J. Neural mechanism of cognitive control impairment in patients with hepatic cirrhosis: a functional magnetic resonance imaging study.  Acta Radiol. 2007;  48(5) 577-587
  • 194 Zhang L J, Yang G, Yin J, Liu Y, Qi J. Abnormal default-mode network activation in cirrhotic patients: a functional magnetic resonance imaging study.  Acta Radiol. 2007;  48(7) 781-787
  • 195 Siami S, Annane D, Sharshar T. The encephalopathy in sepsis.  Crit Care Clin. 2008;  24(1) 67-82 , viii
  • 196 Jackson A C, Gilbert J J, Young G B, Bolton C F. The encephalopathy of sepsis.  Can J Neurol Sci. 1985;  12(4) 303-307
  • 197 Finelli P F, Uphoff D F. Magnetic resonance imaging abnormalities with septic encephalopathy.  J Neurol Neurosurg Psychiatry. 2004;  75(8) 1189-1191
  • 198 Sharshar T, Carlier R, Bernard F et al.. Brain lesions in septic shock: a magnetic resonance imaging study.  Intensive Care Med. 2007;  33(5) 798-806
  • 199 Hollinger P, Zurcher R, Schroth G, Mattle H P. Diffusion magnetic resonance imaging findings in cerebritis and brain abscesses in a patient with septic encephalopathy.  J Neurol. 2000;  247(3) 232-234
  • 200 Bartynski W S, Boardman J F, Zeigler Z R, Shadduck R K, Lister J. Posterior reversible encephalopathy syndrome in infection, sepsis, and shock.  AJNR Am J Neuroradiol. 2006;  27(10) 2179-2190
  • 201 Kampfl A, Franz G, Aichner F et al.. The persistent vegetative state after closed head injury: clinical and magnetic resonance imaging findings in 42 patients.  J Neurosurg. 1998;  88(5) 809-816
  • 202 Woischneck D, Klein S, Reissberg S et al.. Prognosis of brain stem lesion in children with head injury.  Childs Nerv Syst. 2003;  19(3) 174-178
  • 203 Firsching R, Woischneck D, Klein S, Ludwig K, Dohring W. Brain stem lesions after head injury.  Neurol Res. 2002;  24(2) 145-146
  • 204 Firsching R, Woischneck D, Klein S et al.. Classification of severe head injury based on magnetic resonance imaging.  Acta Neurochir (Wien). 2001;  143(3) 263-271
  • 205 Wedekind C, Hesselmann V, Klug N. Comparison of MRI and electrophysiological studies for detecting brainstem lesions in traumatic brain injury.  Muscle Nerve. 2002;  26(2) 270-273
  • 206 Wedekind C, Hesselmann V, Lippert-Gruner M, Ebel M. Trauma to the pontomesencephalic brainstem-a major clue to the prognosis of severe traumatic brain injury.  Br J Neurosurg. 2002;  16(3) 256-260
  • 207 Carpentier A, Galanaud D, Puybasset L et al.. Early morphologic and spectroscopic magnetic resonance in severe traumatic brain injuries can detect “invisible brain stem damage” and predict “vegetative states”.  J Neurotrauma. 2006;  23(5) 674-685
  • 208 Paterakis K, Karantanas A H, Komnos A, Volikas Z. Outcome of patients with diffuse axonal injury: the significance and prognostic value of MRI in the acute phase.  J Trauma. 2000;  49(6) 1071-1075
  • 209 Zheng W B, Liu G R, Kong K M, Wu R H. Coma duration prediction in diffuse axonal injury: analyses of apparent diffusion coefficient and clinical prognostic factors.  Conf Proc IEEE Eng Med Biol Soc. 2006;  1 1052-1055
  • 210 Ross B D, Ernst T, Kreis R et al.. 1H MRS in acute traumatic brain injury.  J Magn Reson Imaging. 1998;  8(4) 829-840
  • 211 Friedman S D, Brooks W M, Jung R E et al.. Quantitative proton MRS predicts outcome after traumatic brain injury.  Neurology. 1999;  52(7) 1384-1391
  • 212 Sinson G, Bagley L J, Cecil K M et al.. Magnetization transfer imaging and proton MR spectroscopy in the evaluation of axonal injury: correlation with clinical outcome after traumatic brain injury.  AJNR Am J Neuroradiol. 2001;  22(1) 143-151
  • 213 Uzan M, Albayram S, Dashti S G et al.. Thalamic proton magnetic resonance spectroscopy in vegetative state induced by traumatic brain injury.  J Neurol Neurosurg Psychiatry. 2003;  74(1) 33-38
  • 214 Oder W, Goldenberg G, Podreka I, Deecke L. HM-PAO-SPECT in persistent vegetative state after head injury: prognostic indicator of the likelihood of recovery?.  Intensive Care Med. 1991;  17(3) 149-153
  • 215 Bavetta S, Nimmon C C, White J et al.. A prospective study comparing SPET with MRI and CT as prognostic indicators following severe closed head injury.  Nucl Med Commun. 1994;  15(12) 961-968
  • 216 Shiina G, Onuma T, Kameyama M et al.. Sequential assessment of cerebral blood flow in diffuse brain injury by 123I-iodoamphetamine single-photon emission CT.  AJNR Am J Neuroradiol. 1998;  19(2) 297-302
  • 217 Roine R O, Raininko R, Erkinjuntti T, Ylikoski A, Kaste M. Magnetic resonance imaging findings associated with cardiac arrest.  Stroke. 1993;  24(7) 1005-1014
  • 218 Els T, Kassubek J, Kubalek R, Klisch J. Diffusion-weighted MRI during early global cerebral hypoxia: a predictor for clinical outcome?.  Acta Neurol Scand. 2004;  110(6) 361-367
  • 219 Wijdicks E F, Campeau N G, Miller G M. MR imaging in comatose survivors of cardiac resuscitation.  AJNR Am J Neuroradiol. 2001;  22(8) 1561-1565
  • 220 Schaafsma A, de Jong B M, Bams J L et al.. Cerebral perfusion and metabolism in resuscitated patients with severe post-hypoxic encephalopathy.  J Neurol Sci. 2003;  210(1–2) 23-30
  • 221 Berek K, Lechleitner P, Luef G et al.. Early determination of neurological outcome after prehospital cardiopulmonary resuscitation.  Stroke. 1995;  26(4) 543-549
  • 222 Wijdicks E F, Hijdra A, Young G B et al.. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology.  Neurology. 2006;  67(2) 203-210

Robert D StevensM.D. 

Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, Johns Hopkins Hospital

600 North Wolfe Street, Meyer 8-140, Baltimore, MD 21287

Email: rstevens@jhmi.edu

    >