Horm Metab Res 2009; 41(4): 277-280
DOI: 10.1055/s-0028-1103287
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Influence of Neonatal Vitamin A or Vitamin D Treatment on the Concentration of Biogenic Amines and their Metabolites in the Adult Rat Brain

K. Tekes 1 , M. Gyenge 1 , A. Folyovich 2 , G. Csaba 3
  • 1Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
  • 2St. John's Hospital Budapest, Hungary
  • 3Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
Further Information

Publication History

received 16.09.2008

accepted 03.11.2008

Publication Date:
03 December 2008 (online)

Abstract

Newborn male rats were treated with a single dose of 3 mg vitamin A (retinol) or 0.05 mg vita-min D (cholecalciferol), and three months later five brain regions (frontopolar cortex, hypothalamus, hippocampus, striatum, and brainstem) were studied for tissue levels of dopamine (DA), serotonin (5HT), and metabolites such as homovanillic acid (HVA), as well as 5-hydroxyindole-3-acetic acid (5HIAA). Vitamin A treatment as hormonal imprinting significantly decreased 5HIAA levels in each brain region. Vitamin D imprinting significantly elevated DA only in the brainstem and HVA levels in striatum and hypothalamus. Present and earlier brain-imprinting results (with brain-produced substances), show that the profound and life-long effect of neonatal hormonal imprinting on neurotransmitter production of the adult brain seems to be well established. As prophylactic treatment with these vitamins is frequent in the perinatal period, the imprinting effect of vitamin A and vitamin D must be taken into consideration.

References

  • 1 Csaba G. Phylogeny and ontogeny of hormone receptors: the selection theory of receptor formation and hormonal imprinting.  Biol Rev. 1980;  55 47-63
  • 2 Csaba G. Hormonal imprinting: its role in the evolution and development of hormones and receptors.  Cell Biol Int. 2000;  24 407-414
  • 3 Tchernitchin A, Tchernitchin N. Imprinting of heterodifferentation by prenatal or perinatal exposure to hormones, pharmaceuticals, pollutants and other agents and conditions.  Med Sci Res. 1992;  20 391-397
  • 4 Csaba G. Hormonal imprinting:phylogeny, ontogeny, diseases and possible role in present-day human evolution.  Cell Biochem Funct. 2008;  26 1-10
  • 5 Csaba G, Nagy SU. Influence of the neonatal suppression of TSH production (neonatal hyperthyroidism) on response to TSH in adulthood.  J Endocrinol Invest. 1985;  8 557-559
  • 6 Csaba G. The present state in the phylogeny and ontogeny of hormone receptors.  Horm Metab Res. 1984;  16 329-335
  • 7 Csaba G, Gaál A, Kovács P, Simon G, Kõhidai L. Prolonged elevation of insulin content in the unicellular Tetrahymena after insulin treatment: induction of insulin production or storage.  Cell Biochem Funct. 1999;  17 165-173
  • 8 Csaba G. Interactions between the genetic programme and environmental influences in the perinatal critical period.  Zool Sci. 1991;  8 813-825
  • 9 Csaba G, Karabélyos C, Dalló J. Fetal and neonatal action of polycyclic hydrocarbon (benzpyrene) or a synthetic steroid hormone (allylestrenol) as reflected by the sexual behavior of adult rats.  J Dev Physiol. 1991;  15 337-340
  • 10 Brinkmann AO. Steroid hormone receptors: activators of gene transcription.  J Pediatr Endocrinol. 1994;  7 275-282
  • 11 Snodgrass SR. Vitamin neurotoxicity.  Mol Neurobiol. 1992;  6 41-73
  • 12 Csaba G, Gaál A. Effect of perinatal vitamin A or retinoic acid treatment (hormonal imprinting) on the sexual behavior of adult rats.  Hum Exp Toxicol. 1997;  16 193-197
  • 13 Gaál A, Csaba G. Testosterone and progesterone level alterations in the adult rat, after retinoid (retinol or retinoic acid) treatment (imprinting)in neonatal or adolescent age.  Horm Metab Res. 1998;  30 487-489
  • 14 Gaál A, Csaba G. Effect of retinoid (vitamin A or retinoic acid) treatment (hormonal imprinting) through breastmilk on the glucocorticoid receptor and estrogen receptor binding capacity of the adult rat offspring.  Hum Exp Toxicol. 1998;  17 560-563
  • 15 Glowinski J, Iversen LL. Regional studies of catecholamines in the rat brain I. The disposition of 3H-noradrenaline, 3H-dopamine and 3H-DOPA in various regions of rat brain.  J Neurochem. 1966;  13 655-669
  • 16 Wolf G. Vitamin A functions in the regulation of the dopaminergic system in the brain and pituitary gland.  Nutr Rev. 1998;  56 354-355
  • 17 Goodman AB. Three independent lines of evidence suggest retinoids as causal to schizophrenia.  Proc Natl Acad Sci USA. 1998;  95 7240-7244
  • 18 Bremner JD, MacCaffery P. The neurobiology of retinoic acid in affective disorders.  Prog Neuropsychopharmacol Biol Psychiatry. 2008;  32 315-331
  • 19 O’Reilly KC, Trent S, Bailey SJ, Lane MA. 13-cis retinoic acid alters intracellular serotonin, increases 5-HT1A receptor, and serotonin reuptake transporter levels in vitro.  Exp Biol Med. 2007;  232 1195-1203
  • 20 MacCann JC, Ames BN. Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction?.  FASEB J. 2008;  22 982-1001
  • 21 Cui X, MacGrath JJ, Burne TH, Mackay-Sim A, Eyles DW. Maternal vitamin D depletion alters neurogenesis in the developing rat brain.  Int J Dev Neurosci. 2007;  25 227-232
  • 22 O’Loan J, Eyles DW, Kesby J, Ko P, MacGrath JJ, Burne TH. Vitamin D deficiency during various stages of pregnancy in the rat; its impact on development and behaviour in adult offspring.  Psychoneuroendocrinology. 2007;  32 227-234
  • 23 Harms LR, Eyles DW, MacGrath JJ, Mackay-Sim A, Burne TH. Developmental vitamin D deficiency alters adult behaviour in 129/SvJ and C57BL/6J mice.  Behav Brain Res. 2008;  187 343-350
  • 24 Cass WA, Smith MP, Peters LE. Calcitriol protects against the dopamine- and serotonin-depleting effects of neurotoxic doses of methamphetamine.  Ann N Y Acad Sci. 2006;  1074 261-271
  • 25 Csaba G, Knippel B, Karabélyos C, Inczefi-Gonda Á, Hantos M, Tóthfalusi L, Tekes K. Effect of neonatal β-endorphin imprinting on sexual behavior and brain serotonin level in adult rats.  Life Sci. 2003;  73 103-114
  • 26 Tekes K, Hantos M, Csaba G. Single neonatal treatment with β-endorphin (hormonal imprinting) extremely enhances nocistatin level of cerebrospinal fluid in adult rats.  Life Sci. 2004;  74 1993-1997
  • 27 Csaba G, Knippel B, Karabélyos C, Inczefi-Gonda Á, Hantos M, Tekes K. Endorphin excess at weaning durably influences sexual activity, uterine estrogen receptor's binding capacity and brain serotonin level of female rats.  Horm Metab Res. 2004;  36 39-43
  • 28 Tekes K, Gyenge M, Hantos M, Csaba G. Effect of β-endorphin imprinting during late pregnancy on the brain serotonin and plasma nocistatin levels of adult male rats.  Horm Metab Res. 2007;  39 479-481
  • 29 Tekes K, Gyenge M, Sótonyi P, Csaba G. Effect of neonatal nociceptin or nocistatin imprinting on the brain concentration of biogenic amines and their metabolites.  Brain Dev. 2008 Jun 30;  , epub ahead of print
  • 30 Moura EG, Santos RS, Lisboa PC, Alves SB, Bonomo IT, Fagundes ATS, Oliveira E, Passos MCF. Thyroid function and body weight programming by neonatal hyperthyroidism in rats – the role of leptin and deiodinase activities.  Horm Metab Res. 2008;  40 1-7
  • 31 Kuroki T, Nagao N, Nakahara T. Neuropharmacology of second-generation antipsychotic drugs: a validity of the serotonin-dopamine hypothesis.  Prog Brain Res. 2008;  172 199-212
  • 32 New AS, Goodman M, Triebwasser J, Siever LJ. Recent advances in the biological study of personality disorders.  Psychiatr Clin North Am. 2008;  31 441-461

Correspondence

G. CsabaMD, PhD, DSc 

Professor Emeritus

Department of Genetics, Cell and Immunobiology

Semmelweis University

Nagyvárad tér 4

Budapest

1445 POB 370 Hungary

Phone: +36/1/210 29 50

Fax: +36/1/210 29 50

Email: csagyor@dgci.sote.hu

    >