Zentralbl Chir 2009; 134(3): 231-236
DOI: 10.1055/s-0028-1098702
Originalarbeit

© Georg Thieme Verlag Stuttgart ˙ New York

Sublinguale Mikrozirkulationsstörungen bei Patienten im septischen Schock: Untersuchungen mittels OPS-Imaging-System und PiCCO®-Monitoring

Microcirculatory Failure of Sublingual Perfusion in Septic-Shock Patients. Examination by OPS Imaging and PiCCO MonitoringR. Wiessner1 , P. Gierer2 , 4 , K. Schaser3 , A. Pertschy1 , B. Vollmar4 , E. Klar1
  • 1Universität Rostock, Medizinische Fakultät, Abteilung für Allgemein-, Gefäß-, Thorax- und Transplantationschirurgie, Rostock
  • 2Universität Rostock, Medizinische Fakultät, Abteilung für Unfall- und Wiederherstellungschirurgie, Rostock
  • 3Zentrum für Muskuloskeletale Chirurgie, Charité Campus Virchow-Klinikum, Berlin
  • 4Universität Rostock, Medizinische Fakultät, Abteilung für Experimentelle Chirurgie, Rostock
Further Information

Publication History

Publication Date:
17 June 2009 (online)

Zusammenfassung

Einleitung: Das hämodynamische Monitoring von Patienten mit Sepsis ist aufgrund der Diskrepanz von Makrohämodynamik und Organmikrozirkulation erschwert. Die Pulskonturanalyse (PiCCO®-System) beinhaltet neue Parameter zur besseren Beurteilung des Volumenstatus kritisch kranker Patienten. Dennoch besitzen Veränderungen von Regionalkreisläufen, insbesondere des Splanchnikusgebietes, eine besondere Wertigkeit für die Pathophysiologie der Sepsis. Ziel unserer Untersuchungen war daher der Vergleich von makrohämodynamischen Parametern (PiCCO®-System) mit der sublingualen Mikrozirkulation (OPS-Imaging) als indirektes Messverfahren für die Perfusion des Splanchnikusgebietes bei Patienten mit schwerer Sepsis im Multiorganversagen. Methodik: Es erfolgten mehrfache Untersuchungen im 24-stündigen Abstand an insgesamt 7 Patienten mit septischem Schock und Multiorgandysfunktion (APACHE II-Score > 25) mittels PiCCO®-Monitoring und dem Orthogonal-Polarization-Spectral(OPS)-Imaging. Durch das PiCCO®- Monitoring wurden sämtliche makrohämodynamischen Parameter bestimmt. Das OPS-Imaging wurde für jeweils 20 s an 6 verschiedenen Lokalisationen sublingual durchgeführt, zur indirekten Beurteilung der Perfusion des Hepatosplanchnikusgebietes. Mittels computerassistierter Bildverarbeitungsanalyse erfolgte die quantitative Erfassung der Gefäßdichte mit Einteilung in kleine und große Gefäße (< 25 bzw. > 25 µm) und der Strömungsgeschwindigkeit in Venolen. Ergebnisse: Es zeigte sich eine signifikante Korrelation zwischen der venolären Strömungsgeschwindigkeit und dem systemischen vaskulären Widerstands-Index (r2 = 0,252; p < 0,05), dem mittleren arteriellen Blutdruck (r2 = 0,259; p < 0,05) sowie dem pH-Wert (r2 = 0,265; p < 0,05). Weiterhin fand sich eine signifikante Beziehung zwischen dem Sauerstofftransport-Index und der Dichte der kleinen Gefäße (r2 = 0,355; p < 0,05). Diskussion: Unsere Untersuchungen zeigen, dass die durch das PiCCO®-Monitoring gewonnenen Daten zu einer Beurteilung der Mikrozirkulation während schwerer Sepsis und Multiorganversagen herangezogen werden können. Das OPS-Imaging von nichtinvasiv zugängigen, für das Splanchnikusgebiet repräsentativen Lokalisationen ist für die Charakterisierung der Mikrozirkulation die genauere Untersuchungsmethode, bedarf jedoch einer umfangreichen und zeitaufwendigen Auswertung.

Abstract

Background: Haemodynamic monitoring of septic patients is impeded by the discrepancy between the macrohaemodynamics and the microcirculation of internal organs. Pulse contour analysis (PiCCO®) provides new parameters for an improved assessment of the volume status of critically ill patients. However, changes in regional circulation, in particular those affecting the splanchnic perfusion, have proven to be especially important. The aim of our study was to compare macrohaemodynamic parameters (PiCCO®) with microcirculation (OPS imaging) in severely septic patients with multiple organ failure. Patients and Methods: In seven patients suffering from septic shock and multiple organ failure (APACHE II score > 25) repeated examinations at a twenty-four hour interval were carried out by PiCCO® monitoring and OPS imaging. OPS data were recorded for twenty seconds at 6 different buccal and sublingual localisations, adequately reflecting microvascular perfusion of the liver and the small intestine. Data were videotaped for off-line analysis, calculating current velocity in small and large venules (< 25 and > 25 µm), as well as functional capillary density. Results: Significant correlations were found for current velocity in small venules with systemic vascular resistance (r2 = 0.252, p < 0.05), mean arterial blood pressure (r2 = 0.259, p < 0.05), and pH value (r2 = 0.265, p < 0.05). In addition, a significant correlation was found between the oxygen transport index and the density of small vessels (r2 = 0.355; p < 0.05). Conclusion: According to our findings, data acquired through PiCCO® monitoring may be used for a rough estimation of the microcirculation during severe sepsis and multiple organ failure. For an assessment of the local conditions of perfusion, however, there are limits in the use of the parameters that were the object of our research. For the measurement at localisations which are accessible non-invasively and representative of the splanchnic perfusion, OPS is the more accurate method for characterisation of the microcirculation, although a more extensive and time-consuming analysis is needed.

Literatur

  • 1 Berkenstadt H, Margalit N, Hadani M et al. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery.  Anesth Analg. 2001;  92 984-989
  • 2 De Backer D, Creteur J, Preiser J C et al. Microvascular blood flow is altered in patients with sepsis.  Am J Respir Crit Care Med. 2002;  166 98-104
  • 3 Godje O, Hoke K, Lamm P et al. Continuous, less invasive, hemodynamic monitoring in intensive care after cardiac surgery.  Thorac Cardiovasc Surg. 1998;  46 242-249
  • 4 Godje O, Hoke K, Goetz A E et al. Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability.  Crit Care Med. 2002;  30 52-58
  • 5 Harris A G, Sinitsina I, Messmer K. The Cytoscan Model E-II, a new reflectance microscope for intravital microscopy: comparison with the standard fluorescence method.  J Vasc Res. 2000;  37 469-476
  • 6 Harris A G, Sinitsina I, Messmer K. Validation of OPS imaging for microvascular measurements during isovolumic hemodilution and low hematocrits.  Am J Physiol Heart Circ Physiol. 2002;  282 H 1502-H 1509
  • 7 Kimura S, Yoshioka T, Shibuya M et al. Indocyanine green elimination rate detects hepatocellular dysfunction early in septic shock and correlates with survival.  Crit Care Med. 2001;  29 1159-1163
  • 8 Knaus W A, Draper E A, Wagner D P et al. APACHE II: a severity of disease classification system.  Crit Care Med. 1985;  13 818-829
  • 9 Langer S, Dobschuetz E, Harris A G et al. Validation of the orthogonal Spectral Imaging Technique on solid organs. In: Messmer K, ed. Orthogonal Polarization Spectral imaging. Prog Appl Microcirc. Basel: Karger; 2000: (24) 32–46
  • 10 Marik P E. Sublingual capnography: a clinical validation study.  Chest. 2001;  120 923-927
  • 11 Mathura K R, Vollebregt K C, Boer K et al. Comparison of OPS imaging and conventional capillary microscopy to study the human microcirculation.  J Appl Physiol. 2001;  91 74-78
  • 12 Nakagawa Y, Weil M H, Tang W et al. Sublingual capnometry for diagnosis and quantitation of circulatory shock.  Am J Respir Crit Care Med. 1998;  157 1838-1843
  • 13 Sakka S G, Meier-Hellmann A. Indocyanine green for the assessment of liver function in critically ill patients. In: Vincent JL, ed. Yearbook of Intensive Care and Emergency Medicine. Berlin, Heidelberg, New-York: Springer; 2001: 611–618
  • 14 Sakka S G, Reinhart K, Meier-Hellmann A. Prognostic value of the indocyanine green plasma disappearance rate in critically ill patients.  Chest. 2002;  122 1715-1720
  • 15 Sakr Y, Dubois M J, De Backer D et al. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock.  Crit Care Med. 2004;  32 1825-1831
  • 16 Schaser K D, Puhl G, Vollmar B et al. In vivo imaging of human pancreatic microcirculation and pancreatic tissue injury in clinical pancreas transplantation.  Am J Transplant. 2005;  5 341-350
  • 17 Schmitz V, Schaser K D, Olschewski P et al. In vivo visualization of early microcirculatory changes following ischemia / reperfusion injury in human kidney transplantation.  Eur Surg Res. 2008;  40 19-25
  • 18 Stechmiller J K, Treloar D, Allen N. Gut dysfunction in critically ill patients: a review of the literature.  Am J Crit Care. 1997;  6 204-209
  • 19 Sturm J A. Entwicklung und Bedeutung der Lungenwassermessung in Klinik und Experiment. In: Beiträge zur Anästhesiologie und Intensivmedizin. Wien: Maudrich; 1988: 15–39
  • 20 Tugtekin I, Theisen M, Matejovic M et al. Endotoxin-induced ileal mucosal acidosis is associated with impaired villus microcirculation in pigs. In: Messmer K, ed. Orthogonal Polarization Spectral imaging. Prog Appl Microcirc. Basel: Karger; 2000: (24) 61–69
  • 21 Vincent J L, Moreno R, Takala J et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction / failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine.  Intensive Care Med. 1996;  22 707-710
  • 22 Weil M H, Nakagawa Y, Tang W et al. Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock.  Crit Care Med. 1999;  27 1225-1229
  • 23 Zollner C, Haller M, Weis M et al. Beat-to-beat measurement of cardiac output by intravascular pulse contour analysis: a prospective criterion standard study in patients after cardiac surgery.  J Cardiothorac Vasc Anesth. 2000;  14 125-129

Dr. med. R. Wießner

Klinikum Südstadt Rostock · Klinik für Chirurgie

Südring 81

18059 Rostock

Phone: 03 81 / 44 01 40 00

Fax: 03 81 / 44 01 40 99

Email: reiko.wiessner@kliniksued-rostock.de

    >