Semin Reprod Med 2008; 26(6): 469-478
DOI: 10.1055/s-0028-1096127
© Thieme Medical Publishers

Potential Regulatory Functions of MicroRNAs in the Ovary

Tannaz Toloubeydokhti1 , 4 , Orhan Bukulmez2 , 4 , Nasser Chegini3 , 4
  • 1Postdoctroal Fellow
  • 2Assistant Professor
  • 3Professor
  • 4Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
24. Oktober 2008 (online)

ABSTRACT

The interactions between ovarian germ and somatic cells and expression of several intraovarian autocrine/paracrine regulators are major contributing factors in the ovary. These intraovarian mediators regulate various ovarian cellular activities including cell growth, differentiation, and apoptosis, which are critical in follicular development. MicroRNAs (miRNAs) have emerged as key components of posttranscriptional gene expression. Recent evidence generated in mice implicates the regulatory function of miRNAs in oocyte maturation and ovarian follicular development. In the human, miRNAs may target specific gene expression in granulosa cells and participate in establishment and progression of ovarian cancer. Here, we review the currently available information on the expression and potential regulatory functions of miRNAs in the ovary under normal and pathologic conditions. Understanding the underlying mechanisms of how ovarian germ cell and somatic cell miRNAs are regulated and identifying their specific target genes and their functions may lead to the development of strategies to achieve target-specific gene regulation for the prevention and treatment of various ovarian disorders.

REFERENCES

  • 1 Albertini D F, Barrett S L. Oocyte-somatic cell communication.  Reprod Suppl. 2003;  61 49-54
  • 2 Amsterdam A. Novel genes regulated by gonadotropins in granulosa cells: new perspectives on their physiological functions.  Mol Cell Endocrinol. 2003;  202 133-137
  • 3 Andreu-Vieyra C, Lin Y N, Matzuk M M. Mining the oocyte transcriptome.  Trends Endocrinol Metab. 2006;  17 136-143
  • 4 Makabe S, Naguro T, Stallone T. Oocyte-follicle cell interactions during ovarian follicle development, as seen by high resolution scanning and transmission electron microscopy in humans.  Microsc Res Tech. 2006;  69 436-449
  • 5 Matzuk M M, Burns K H, Viveiros M M et al.. Intercellular communication in the mammalian ovary: oocytes carry the conversation.  Science. 2002;  296 2178-2180
  • 6 Angelopoulos N, Goula A, Tolis G. The role of luteinizing hormone activity in controlled ovarian stimulation.  J Endocrinol Invest. 2005;  28 79-88
  • 7 Assou S, Anahory T, Pantesco V et al.. The human cumulus–oocyte complex gene-expression profile.  Hum Reprod. 2006;  21 1705-1719
  • 8 Barnett K R, Schilling C, Greenfeld C R et al.. Ovarian follicle development and transgenic mouse models.  Hum Reprod Update. 2006;  12 537-555
  • 9 Ben Ami I, Freimann S, Armon L et al.. Novel function of ovarian growth factors: combined studies by DNA microarray, biochemical and physiological approaches.  Mol Hum Reprod. 2006;  12 413-419
  • 10 Chin K V, Seifer D B, Feng B et al.. DNA microarray analysis of the expression profiles of luteinized granulosa cells as a function of ovarian reserve.  Fertil Steril. 2002;  77 1214-1218
  • 11 Choi Y, Rajkovic A. Genetics of early mammalian folliculogenesis.  Cell Mol Life Sci. 2006;  63 579-590
  • 12 Cillo F, Brevini T A, Antonini S et al.. Association between human oocyte developmental competence and expression levels of some cumulus genes.  Reproduction. 2007;  134 645-650
  • 13 Dean J. Reassessing the molecular biology of sperm-egg recognition with mouse genetics.  Bioessays. 2004;  26 29-38
  • 14 Drummond A E. The role of steroids in follicular growth.  Reprod Biol Endocrinol. 2006;  4 16
  • 15 Erickson G F, Shimasaki S. The role of the oocyte in folliculogenesis.  Trends Endocrinol Metab. 2000;  11 193-198
  • 16 Gershon E, Plaks V, Dekel N. Gap junctions in the ovary: expression, localization and function.  Mol Cell Endocrinol. 2008;  282 18-25
  • 17 Guigon C J, Magre S. Contribution of germ cells to the differentiation and maturation of the ovary: insights from models of germ cell depletion.  Biol Reprod. 2006;  74 450-458
  • 18 Hillier S G. Gonadotropic control of ovarian follicular growth and development.  Mol Cell Endocrinol. 2001;  179 39-46
  • 19 Matzuk M M. Revelations of ovarian follicle biology from gene knockout mice.  Mol Cell Endocrinol. 2000;  163 61-66
  • 20 McKenzie L J, Pangas S A, Carson S A et al.. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF.  Hum Reprod. 2004;  19 2869-2874
  • 21 Pannetier M, Mandon-Pepin B, Copelli S et al.. Molecular aspects of female and male gonadal development in mammals.  Pediatr Endocrinol Rev. 2004;  1 274-287
  • 22 Russell D L, Robker R L. Molecular mechanisms of ovulation: co-ordination through the cumulus complex.  Hum Reprod Update. 2007;  13 289-312
  • 23 van den Hurk R, Zhao J. Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles.  Theriogenology. 2005;  63 1717-1751
  • 24 Visser J A, de Jong F H, Laven J S et al.. Anti-Mullerian hormone: a new marker for ovarian function.  Reproduction. 2006;  131 1-9
  • 25 Woodruff T K, Shea L D. The role of the extracellular matrix in ovarian follicle development.  Reprod Sci. 2007;  14 6-10
  • 26 Macklon N S, Fauser B C. Ovarian reserve.  Semin Reprod Med. 2005;  23 248-256
  • 27 Santoro N. The menopausal transition.  Am J Med. 2005;  118(Suppl 12B) 8-13
  • 28 Sherman S. Defining the menopausal transition.  Am J Med. 2005;  118(Suppl 12B) 3-7
  • 29 Johnson J, Canning J, Kaneko T et al.. Germline stem cells and follicular renewal in the postnatal mammalian ovary.  Nature. 2004;  428 145-150
  • 30 Liu Y, Wu C, Lyu Q et al.. Germline stem cells and neo-oogenesis in the adult human ovary.  Dev Biol. 2007;  306 112-120
  • 31 Dumesic D A, Abbott D H. Implications of polycystic ovary syndrome on oocyte development.  Semin Reprod Med. 2008;  26 53-61
  • 32 Tajima K, Orisaka M, Mori T et al.. Ovarian theca cells in follicular function.  Reprod Biomed Online. 2007;  15 591-609
  • 33 Tsafriri A, Motola S. Are steroids dispensable for meiotic resumption in mammals?.  Trends Endocrinol Metab. 2007;  18 321-327
  • 34 Vegetti W, Alagna F. FSH and folliculogenesis: from physiology to ovarian stimulation.  Reprod Biomed Online. 2006;  12 684-694
  • 35 Wiesak T. Role of LH in controlled ovarian stimulation.  Reprod Biol. 2002;  2 215-227
  • 36 Zheng P, Dean J. Oocyte-specific genes affect folliculogenesis, fertilization, and early development.  Semin Reprod Med. 2007;  25 243-251
  • 37 Baka S, Malamitsi-Puchner A. Novel follicular fluid factors influencing oocyte developmental potential in IVF: a review.  Reprod Biomed Online. 2006;  12 500-506
  • 38 Britt K L, Findlay J K. Regulation of the phenotype of ovarian somatic cells by estrogen.  Mol Cell Endocrinol. 2003;  202 11-17
  • 39 Damjanov I. From stem cells to germ cell tumors and back.  Verh Dtsch Ges Pathol. 2004;  88 39-44
  • 40 Dean J. Oocyte-specific genes regulate follicle formation, fertility and early mouse development.  J Reprod Immunol. 2002;  53 171-180
  • 41 Hernandez-Gonzalez I, Gonzalez-Robayna I, Shimada M et al.. Gene expression profiles of cumulus cell oocyte complexes during ovulation reveal cumulus cells express neuronal and immune-related genes: does this expand their role in the ovulation process?.  Mol Endocrinol. 2006;  20 1300-1321
  • 42 Hutt K J, Albertini D F. An oocentric view of folliculogenesis and embryogenesis.  Reprod Biomed Online. 2007;  14 758-764
  • 43 Pangas S A. Growth factors in ovarian development.  Semin Reprod Med. 2007;  25 225-234
  • 44 Filicori M, Cognigni G E, Pocognoli P et al.. Current concepts and novel applications of LH activity in ovarian stimulation.  Trends Endocrinol Metab. 2003;  14 267-273
  • 45 Zachow R J, Magoffin D A. Direct intraovarian effects of leptin: impairment of the synergistic action of insulin-like growth factor-I on follicle-stimulating hormone-dependent estradiol-17 beta production by rat ovarian granulosa cells.  Endocrinology. 1997;  138 847-850
  • 46 Ambros V, Chen X. The regulation of genes and genomes by small RNAs.  Development. 2007;  134 1635-1641
  • 47 Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function.  Cell. 2004;  116 281-297
  • 48 Di Leva G, Calin G A, Croce C M. MicroRNAs: fundamental facts and involvement in human diseases.  Birth Defects Res C Embryo Today. 2006;  78 180-189
  • 49 Kato M, Slack F J. microRNAs: small molecules with big roles—C. elegans to human cancer.  Biol Cell. 2008;  100 71-81
  • 50 Lee C T, Risom T, Strauss W M. MicroRNAs in mammalian development.  Birth Defects Res C Embryo Today. 2006;  78 129-139
  • 51 He L, Thomson J M, Hemann M T et al.. A microRNA polycistron as a potential human oncogene.  Nature. 2005;  435 828-833
  • 52 O'Donnell K A, Wentzel E A, Zeller K I et al.. c-Myc-regulated microRNAs modulate E2F1 expression.  Nature. 2005;  435 839-843
  • 53 Bartel D P, Chen C Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs.  Nat Rev Genet. 2004;  5 396-400
  • 54 Lim L P, Glasner M E, Yekta S et al.. Vertebrate microRNA genes.  Science. 2003;  299 1540
  • 55 Lim L P, Lau N C, Garrett-Engele P et al.. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.  Nature. 2005;  433 769-773
  • 56 Ku G, McManus M T. Behind the scenes of a small RNA gene-silencing pathway.  Hum Gene Ther. 2008;  19 17-26
  • 57 Bernstein E, Caudy A A, Hammond S M et al.. Role for a bidentate ribonuclease in the initiation step of RNA interference.  Nature. 2001;  409 363-366
  • 58 Bernstein E, Kim S Y, Carmell M A et al.. Dicer is essential for mouse development.  Nat Genet. 2003;  35 215-217
  • 59 Paroo Z, Liu Q, Wang X. Biochemical mechanisms of the RNA-induced silencing complex.  Cell Res. 2007;  17 187-194
  • 60 Ambros V. The functions of animal microRNAs.  Nature. 2004;  431 350-355
  • 61 Zamore P D, Haley B. Ribo-gnome: the big world of small RNAs.  Science. 2005;  309 1519-1524
  • 62 Berezikov E, Guryev V, van de Belt J et al.. Phylogenetic shadowing and computational identification of human microRNA genes.  Cell. 2005;  120 21-24
  • 63 Berezikov E, Cuppen E, Plasterk R H. Approaches to microRNA discovery.  Nat Genet. 2006;  38(Suppl) S2-S7
  • 64 Yu Z, Jian Z, Shen S H et al.. Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and Drosophila tissues than in the embryos.  Nucleic Acids Res. 2007;  35 152-164
  • 65 Murchison E P, Stein P, Xuan Z et al.. Critical roles for Dicer in the female germline.  Genes Dev. 2007;  21 682-693
  • 66 Tang F, Kaneda M, O'Carroll D et al.. Maternal microRNAs are essential for mouse zygotic development.  Genes Dev. 2007;  21 644-648
  • 67 Schier A F. The maternal-zygotic transition: death and birth of RNAs.  Science. 2007;  316 406-407
  • 68 Amanai M, Brahmajosyula M, Perry A C. A restricted role for sperm-borne microRNAs in mammalian fertilization.  Biol Reprod. 2006;  75 877-884
  • 69 Watanabe T, Takeda A, Tsukiyama T et al.. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes.  Genes Dev. 2006;  20 1732-1743
  • 70 Stitzel M L, Seydoux G. Regulation of the oocyte-to-zygote transition.  Science. 2007;  316 407-408
  • 71 Su Y Q, Sugiura K, Woo Y et al.. Selective degradation of transcripts during meiotic maturation of mouse oocytes.  Dev Biol. 2007;  302 104-117
  • 72 Yan W, Morozumi K, Zhang J et al.. Birth of mice after intracytoplasmic injection of single purified sperm nuclei and detection of messenger RNAs and microRNAs in the sperm nuclei.  Biol Reprod. 2008;  78 896-902
  • 73 Rajkovic A, Pangas S A, Ballow D et al.. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression.  Science. 2004;  305 1157-1159
  • 74 Farh K K, Grimson A, Jan C et al.. The widespread impact of mammalian microRNAs on mRNA repression and evolution.  Science. 2005;  310 1817-1821
  • 75 Liu H C, He Z, Rosenwaks Z. Application of complementary DNA microarray (DNA chip) technology in the study of gene expression profiles during folliculogenesis.  Fertil Steril. 2001;  75 947-955
  • 76 Luque-Ramirez M, San Millan J L, Escobar-Morreale H F. Genomic variants in polycystic ovary syndrome.  Clin Chim Acta. 2006;  366 14-26
  • 77 Park S M, Shell S, Radjabi A R et al.. Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2.  Cell Cycle. 2007;  6 2585-2590
  • 78 Rajkovic A. Genetics of ovarian failure and development.  Semin Reprod Med. 2007;  25 223-224
  • 79 Wood J R, Dumesic D A, Abbott D H et al.. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis.  J Clin Endocrinol Metab. 2007;  92 705-713
  • 80 Hagan J P, Croce C M. MicroRNAs in carcinogenesis.  Cytogenet Genome Res. 2007;  118 252-259
  • 81 Brennecke J, Stark A, Russell R B et al.. Principles of microRNA-target recognition.  PLoS Biol. 2005;  3 e85
  • 82 Grimson A, Farh K K, Johnston W K et al.. MicroRNA targeting specificity in mammals: determinants beyond seed pairing.  Mol Cell. 2007;  27 91-105
  • 83 Pillai R S, Bhattacharyya S N, Artus C G et al.. Inhibition of translational initiation by Let-7 microRNA in human cells.  Science. 2005;  309 1573-1576
  • 84 Humphreys D T, Westman B J, Martin D I et al.. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function.  Proc Natl Acad Sci U S A. 2005;  102 16961-16966
  • 85 Li S C, Tang P, Lin W C. Intronic microRNA: discovery and biological implications.  DNA Cell Biol. 2007;  26 195-207
  • 86 Pan Q, Luo X, Toloubeydokhti T et al.. The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression.  Mol Hum Reprod. 2007;  13 797-806
  • 87 Carleton M, Cleary M A, Linsley P S. MicroRNAs and cell cycle regulation.  Cell Cycle. 2007;  6 2127-2132
  • 88 Harfe B D, McManus M T, Mansfield J H et al.. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb.  Proc Natl Acad Sci U S A. 2005;  102 10898-10903
  • 89 Jovanovic M, Hengartner M O. miRNAs and apoptosis: RNAs to die for.  Oncogene. 2006;  25 6176-6187
  • 90 Kuehbacher A, Urbich C, Dimmeler S. Targeting microRNA expression to regulate angiogenesis.  Trends Pharmacol Sci. 2008;  29 12-15
  • 91 Linsley P S, Schelter J, Burchard J et al.. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression.  Mol Cell Biol. 2007;  27 2240-2252
  • 92 Ro S, Song R, Park C et al.. Cloning and expression profiling of small RNAs expressed in the mouse ovary.  RNA. 2007;  13 2366-2380
  • 93 Alford C, Toloubeydokhti T, Al Katanani Y et al.. The expression of microRNA (miRNA) mir-23a and 23b and their target gene, CYP19A1 (aromatase) in follicular cells obtained from women undergoing ART.  Fertil Steril. 2007;  88 S166-S167
  • 94 Toloubeydokhti T, Alford C, Al Katanani Y et al.. The expression of microRNA (miRNA), mir-17, mir-211 and mir-542 and their target genes, StAR, IL-1b and Cox2 in follicular cells derived from women undergoing art.  Fertil Steril. 2007;  88 S165-S166
  • 95 Legro R S, Barnhart H X, Schlaff W D et al.. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome.  N Engl J Med. 2007;  356 551-566
  • 96 Hughes C, Elgasim M, Layfield R et al.. Genomic and post-genomic approaches to polycystic ovary syndrome—progress so far: mini review.  Hum Reprod. 2006;  21 2766-2775
  • 97 Reinblatt S L, Buckett W. In vitro maturation for patients with polycystic ovary syndrome.  Semin Reprod Med. 2008;  26 121-126
  • 98 Wood J R, Nelson V L, Ho C et al.. The molecular phenotype of polycystic ovary syndrome (PCOS) theca cells and new candidate PCOS genes defined by microarray analysis.  J Biol Chem. 2003;  278 26380-26390
  • 99 Wood J R, Ho C K, Nelson-Degrave V L et al.. The molecular signature of polycystic ovary syndrome (PCOS) theca cells defined by gene expression profiling.  J Reprod Immunol. 2004;  63 51-60
  • 100 He A, Zhu L, Gupta N et al.. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3–L1 adipocytes.  Mol Endocrinol. 2007;  21 2785-2794
  • 101 Poy M N, Eliasson L, Krutzfeldt J et al.. A pancreatic islet-specific microRNA regulates insulin secretion.  Nature. 2004;  432 226-230
  • 102 Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the machinery of exocytosis of insulin-secreting cells by microRNAs.  Biol Chem. 2008;  389 305-312
  • 103 Jemal A, Siegel R, Ward E et al.. Cancer statistics, 2007.  CA Cancer J Clin. 2007;  57 43-66
  • 104 Calin G A, Croce C M. MicroRNA signatures in human cancers.  Nat Rev Cancer. 2006;  6 857-866
  • 105 Calin G A, Croce C M. MicroRNAs and chromosomal abnormalities in cancer cells.  Oncogene. 2006;  25 6202-6210
  • 106 Volinia S, Calin G A, Liu C G et al.. A microRNA expression signature of human solid tumors defines cancer gene targets.  Proc Natl Acad Sci U S A. 2006;  103 2257-2261
  • 107 Lu J, Getz G, Miska E A et al.. MicroRNA expression profiles classify human cancers.  Nature. 2005;  435 834-838
  • 108 Zeng Y, Cullen B R. Sequence requirements for micro RNA processing and function in human cells.  RNA. 2003;  9 112-123
  • 109 Zeng Y. Principles of micro-RNA production and maturation.  Oncogene. 2006;  25 6156-6162
  • 110 Iorio M V, Visone R, Di Leva G et al.. MicroRNA signatures in human ovarian cancer.  Cancer Res. 2007;  67 8699-8707
  • 111 Shedden K A, Kshirsagar M P, Schwartz D R et al.. Histologic type, organ of origin, and Wnt pathway status: effect on gene expression in ovarian and uterine carcinomas.  Clin Cancer Res. 2005;  11 2123-2131
  • 112 Thrall M, Gallion H H, Kryscio R et al.. BRCA1 expression in a large series of sporadic ovarian carcinomas: a Gynecologic Oncology Group study.  Int J Gynecol Cancer. 2006;  16(Suppl 1) 166-171
  • 113 Yang H, Kong W, He L et al.. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN.  Cancer Res. 2008;  68 425-433
  • 114 Goto M, Iwase A, Ando H et al.. PTEN and Akt expression during growth of human ovarian follicles.  J Assist Reprod Genet. 2007;  24 541-546
  • 115 Nam E J, Yoon H, Kim S W et al.. MicroRNA expression profiles in serous ovarian carcinoma.  Clin Cancer Res. 2008;  14 2690-2695

Nasser CheginiPh.D. 

Department of Obstetrics and Gynecology

University of Florida, Gainesville, FL 32610

eMail: cheginin@obgyn.ufl.edu

    >