Semin Hear 2008; 29(4): 361-370
DOI: 10.1055/s-0028-1095895
© Thieme Medical Publishers

Head, Neck, and Eye Movements That Modulate Tinnitus

Richard Simmons1 , Christina Dambra2 , Edward Lobarinas3 , Christine Stocking3 , Richard Salvi4
  • 1Department of Neurology, University at Buffalo, Buffalo, New York
  • 2Center for Hearing and Deafness, University at Buffalo, Buffalo, New York
  • 3Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, New York
Further Information

Publication History

Publication Date:
24 October 2008 (online)


Recent functional brain imaging studies in humans suggest that the neural generator(s) for tinnitus may reside in the central nervous system and involve both auditory as well as nonauditory centers. The contribution of nonauditory centers in the pathogenesis and regulation of tinnitus is reinforced by studies showing that many patients have somatic tinnitus whereby movements and manipulations of the eyes, head, neck, jaw, and shoulder can modulate the loudness and pitch of their tinnitus. In most cases, the maneuvers lead to increases in tinnitus loudness or pitch rather than decreases. Our results indicate that most tinnitus patients experience only a modest change in loudness or pitch when performing these maneuvers. However, some patients report that these maneuvers significantly modulate the loudness or pitch, sometimes by a factor of 2 to 3. The high prevalence of somatic tinnitus serves to illustrate the complex multimodal interactions that exist between the auditory pathway and other sensory-motor systems innervating the head, neck, shoulders, and eyes.


  • 1 Caird D, Klinke R. Processing of interaural time and intensity differences in the cat inferior colliculus.  Exp Brain Res. 1987;  68(2) 379-392
  • 2 Musicant A D, Butler R A. Influence of monaural spectral cues on binaural localization.  J Acoust Soc Am. 1985;  77(1) 202-208
  • 3 Hawkins D B, Wightman F L. Interaural time discrimination ability of listeners with sensorineural hearing loss.  Audiology. 1980;  19(6) 495-507
  • 4 Hafter E R, Dye Jr R H, Gilkey R H. Lateralization of tonal signals which have neither onsets nor offsets.  J Acoust Soc Am. 1979;  65(2) 471-477
  • 5 Knudsen E I. Early auditory experience aligns the auditory map of space in the optic tectum of the barn owl.  Science. 1983;  222 939-942
  • 6 Knudsen E I. Experience shapes sound localization and auditory unit properties during development in the barn owl. In: Edelman GM, Gall WE, Cowan WM Auditory Function, Neurobiological Bases of Hearing. New York, NY; John Wiley 1988: 137-152
  • 7 Young E D, Nelken I, Conley R A. Somatosensory effects on neurons in dorsal cochlear nucleus.  J Neurophysiol. 1995;  73(2) 743-765
  • 8 Olsen C C, Brandt J F. Middle ear muscle activity during speech in stapedectomized and laryngectomized subjects.  J Am Audiol Soc. 1976;  1(5) 215-220
  • 9 Borg E, Zakrisson J E. The activity of the stapedius muscle in man during vocalization.  Acta Otolaryngol. 1975;  79(5–6) 325-333
  • 10 Levine R A. Somatic (craniocervical) tinnitus and the dorsal cochlear nucleus hypothesis.  Am J Otolaryngol. 1999;  20(6) 351-362
  • 11 Sanchez T G, Guerra G C, Lorenzi M C, Brandao A L, Bento R F. The influence of voluntary muscle contractions upon the onset and modulation of tinnitus.  Audiol Neurootol. 2002;  7(6) 370-375
  • 12 Lockwood A H, Salvi R J, Coad M L et al.. The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity.  Neurology. 1998;  50(1) 114-120
  • 13 Kim K, Burkard R F, Lockwood A H, Salvi R J. Effects of background noise on audiometric thresholds during positron emission tomography: passive and active noise-reduction.  Scand Audiol. 2000;  29(4) 211-216
  • 14 Lockwood A H, Salvi R J, Coad M L et al.. The functional anatomy of the normal human auditory system: responses to 0.5 and 4.0 kHz tones at varied intensities.  Cereb Cortex. 1999;  9(1) 65-76
  • 15 Reyes S A, Salvi R J, Burkard R F et al.. Brain imaging of the effects of lidocaine on tinnitus.  Hear Res. 2002;  171(1–2) 43-50
  • 16 Lockwood A H, Wack D S, Burkard R F et al.. The functional anatomy of gaze-evoked tinnitus and sustained lateral gaze.  Neurology. 2001;  56(4) 472-480
  • 17 House W F. Letter to the editor.  Am J Otol. 1982;  4 188
  • 18 Wall M, Rosenberg M, Richardson D. Gaze-evoked tinnitus.  Neurology. 1987;  37(6) 1034-1036
  • 19 Cacace A T, Lovely T J, Winter D F, Parnes S M, McFarland D J. Auditory perceptual and visual-spatial characteristics of gaze-evoked tinnitus.  Audiology. 1994;  33(5) 291-303
  • 20 Cacace A T, Cousins J P, Parnes S M et al.. Cutaneous-evoked tinnitus. I. Phenomenology, psychophysics and functional imaging.  Audiol Neurootol. 1999;  4(5) 247-257
  • 21 Coad M L, Lockwood A, Salvi R, Burkard R. Characteristics of patients with gaze-evoked tinnitus.  Otol Neurotol. 2001;  22(5) 650-654
  • 22 Baguley D M, Phillips J, Humphriss R L et al.. The prevalence and onset of gaze modulation of tinnitus and increased sensitivity to noise after translabyrinthine vestibular schwannoma excision.  Otol Neurotol. 2006;  27(2) 220-224
  • 23 Biggs N D, Ramsden R T. Gaze-evoked tinnitus following acoustic neuroma resection: a de-afferentation plasticity phenomenon?.  Clin Otolaryngol Allied Sci. 2002;  27(5) 338-343
  • 24 Morgan D H. Tinnitus of TMJ origin: a preliminary report.  Cranio. 1992;  10(2) 124-129
  • 25 Rubinstein B, Axelsson A, Carlsson G E. Prevalence of signs and symptoms of craniomandibular disorders in tinnitus patients.  J Craniomandib Disord. 1990;  4(3) 186-192
  • 26 Pinchoff R J, Burkard R F, Salvi R J, Coad M L, Lockwood A H. Modulation of tinnitus by voluntary jaw movements.  Am J Otol. 1998;  19(6) 785-789
  • 27 Sanchez T G, da Silva Lima A, Brandao A L, Lorenzi M C, Bento R F. Somatic modulation of tinnitus: test reliability and results after repetitive muscle contraction training.  Ann Otol Rhinol Laryngol. 2007;  116(1) 30-35
  • 28 Rubinstein B. Tinnitus and craniomandibular disorders—is there a link?.  Swed Dent J Suppl. 1993;  95 1-46
  • 29 Levine R A, Abel M, Cheng H. CNS somatosensory-auditory interactions elicit or modulate tinnitus.  Exp Brain Res. 2003;  153(4) 643-648
  • 30 Moller A R. Pathophysiology of tinnitus.  Ann Otol Rhinol Laryngol. 1984;  93(1 Pt 1) 39-44
  • 31 Lockwood A H, Burkard R F, Salvi R J et al.. Positron emission tomographic (PET) studies of gaze-evoked tinnitus.  Assoc Res Otolaryngol. 1999;  22 472 (Abstr)
  • 32 Levine R A, Nam E C, Oron Y, Melcher J R. Evidence for a tinnitus subgroup responsive to somatosensory based treatment modalities.  Prog Brain Res. 2007;  166 195-207
  • 33 Levine R A. Somatic modulation appears to be a fundamental attribute of tinnitus. In: Hazel JPW Proceedings of the Sixth International Tinnitus Seminar. Cambridge, UK; Tinnitus and Hyperacusis Center 1999: 193-196

Richard SalviPh.D. 

Center for Hearing & Deafness, 137 Cary Hall

University at Buffalo, Buffalo, NY 14214