Planta Med 2008; 74(13): 1540-1547
DOI: 10.1055/s-0028-1088303
Review
© Georg Thieme Verlag KG Stuttgart · New York

Dietary Cancer Chemopreventive Agents – Targeting Inflammation and Nrf2 Signaling Pathway

Tin Oo Khor1 , Siwang Yu1 , Ah-Ng Kong1
  • 1Center for Cancer Prevention Research and Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
Further Information

Publication History

Received: July 30, 2008 Revised: August 18, 2008

Accepted: August 28, 2008

Publication Date:
20 October 2008 (online)

Abstract

Accumulating epidemiological and clinical evidence shows that chronic inflammation plays a critical role in neoplastic transformation and progression. Long-term users of selective cycloxygenase-2 (Cox-2) inhibitors (coxibs) and non-steroidal anti-inflammatory drugs (NSAIDs) have been reported to have a reduced risk of developing colorectal cancer. However, the adverse gastrointestinal and cardiovascular side effects associated with these drugs have limited their routine use for cancer chemoprevention. Basic leucine zipper (bZIP) protein Nrf2, a key transcription factor mediating the antioxidant response is an important modulator of tumor susceptibility in mouse models. Mice lacking Nrf2 are more susceptible to carcinogenesis induced by carcinogens. Moreover, induction of the Nrf2 signaling pathway is essential for many food phytochemicals to exert their cancer chemopreventive activity as demonstrated in many preclinical studies. It has been recently shown that the combination of coxibs or NSAIDs and natural phytochemicals can synergistically inhibit carcinogenesis in rodent models. This review will focus on the role of chronic inflammation and the Nrf2 signaling pathway in carcinogenesis and the feasibility of targeting these signaling pathways with dietary cancer chemopreventive agents and for cancer chemoprevention.

References

  • 1 Kuper H, Adami H O, Trichopoulos D. Infections as a major preventable cause of human cancer.  J Intern Med. 2000;  248 171-83
  • 2 Aoki Y, Sato H, Nishimura N, Takahashi S, Itoh K, Yamamoto M. Accelerated DNA adduct formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust.  Toxicol Appl Pharmacol. 2001;  173 154-60
  • 3 Ramos-Gomez M, Kwak M K, Dolan P M, Itoh K, Yamamoto M, Talalay P. et al . Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice.  Proc Natl Acad Sci U S A. 2001;  98 3410-5
  • 4 Xu C, Huang M T, Shen G, Yuan X, Lin W, Khor T O. et al . Inhibition of 7,12-dimethylbenz[a]anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2.  Cancer Res. 2006;  66 8293-6
  • 5 auf dem Keller U, Huber M, Beyer T A, Kumin A, Siemes C, Braun S. et al . Nrf transcription factors in keratinocytes are essential for skin tumor prevention but not for wound healing.  Mol Cell Biol. 2006;  26 3773-84
  • 6 Iida K, Itoh K, Kumagai Y, Oyasu R, Hattori K, Kawai K. et al . Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis.  Cancer Res. 2004;  64 6424-31
  • 7 Kitamura Y, Umemura T, Kanki K, Kodama Y, Kitamoto S, Saito K. et al . Increased susceptibility to hepatocarcinogenicity of Nrf2-deficient mice exposed to 2-amino-3-methylimidazo[4,5-f]quinoline.  Cancer Sci. 2007;  98 19-24
  • 8 Osburn W O, Karim B, Dolan P M, Liu G, Yamamoto M, Huso D L. et al . Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment.  Int J Cancer. 2007;  121 1883-91
  • 9 Philip M, Rowley D A, Schreiber H. Inflammation as a tumor promoter in cancer induction.  Semin Cancer Biol. 2004;  14 433-9
  • 10 Maeda H, Akaike T. Nitric oxide and oxygen radicals in infection, inflammation, and cancer.  Biochemistry (Mosc). 1998;  63 854-65
  • 11 Dvorak H F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing.  N Engl J Med. 1986;  315 1650-9
  • 12 Itzkowitz S H, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation.  Am J Physiol Gastrointest Liver Physiol. 2004;  287 G7-17
  • 13 Brostrom O, Lofberg R, Nordenvall B, Ost A, Hellers G. The risk of colorectal cancer in ulcerative colitis. An epidemiologic study.  Scand J Gastroenterol. 1987;  22 1193-9
  • 14 Ekbom A, Helmick C, Zack M, Adami H O. Ulcerative colitis and colorectal cancer. A population-based study.  N Engl J Med. 1990;  323 1228-33
  • 15 Danesh J. Helicobacter pylori and gastric cancer: time for mega-trials?.  Br J Cancer. 1999;  80 927-9
  • 16 Dixon M F. Helicobacter pylori and peptic ulceration: histopathological aspects.  J Gastroenterol Hepatol. 1991;  6 125-30
  • 17 Nomura A, Stemmermann G N, Chyou P H, Kato I, Perez-Perez G I, Blaser M J. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii.  N Engl J Med. 1991;  325 1132-6
  • 18 Miehlke S, Kirsch C, Agha-Amiri K, Gunther T, Lehn N, Malfertheiner P. et al . The Helicobacter pylori vacA s1, m1 genotype and cagA is associated with gastric carcinoma in Germany.  Int J Cancer. 2000;  87 322-7
  • 19 Soll A H. Consensus conference. Medical treatment of peptic ulcer disease. Practice guidelines. Practice parameters committee of the American college of gastroenterology.  JAMA. 1996;  275 622-9
  • 20 Mohar A, Ley C, Guarner J, Herrera-Goepfert R, Figueroa L S, Halperin D. et al . Eradication rate of Helicobacter pylori in a Mexican population at high risk for gastric cancer and use of serology to assess cure.  Am J Gastroenterol. 2002;  97 2530-5
  • 21 Ley C, Mohar A, Guarner J, Herrera-Goepfert R, Figueroa L S, Halperin D. et al . Helicobacter pylori eradication and gastric preneoplastic conditions: a randomized, double-blind, placebo-controlled trial.  Cancer Epidemiol Biomarkers Prev. 2004;  13 4-10
  • 22 Davila J A, Morgan R O, Shaib Y, McGlynn K A, El-Serag H B. Hepatitis C infection and the increasing incidence of hepatocellular carcinoma: a population-based study.  Gastroenterology. 2004;  127 1372-80
  • 23 Omer R E, Kuijsten A, Kadaru A M, Kok F J, Idris M O, El Khidir I M. et al . Population-attributable risk of dietary aflatoxins and hepatitis B virus infection with respect to hepatocellular carcinoma.  Nutr Cancer. 2004;  48 15-21
  • 24 Montalto G, Cervello M, Giannitrapani L, Dantona F, Terranova A, Castagnetta L A. Epidemiology, risk factors, and natural history of hepatocellular carcinoma.  Ann N Y Acad Sci. 2002;  963 13-20
  • 25 Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors.  Gastroenterology. 2004;  127 S35-50
  • 26 Liang T J, Heller T. Pathogenesis of hepatitis C-associated hepatocellular carcinoma.  Gastroenterology. 2004;  127 S62-71
  • 27 Butel J S. Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease.  Carcinogenesis. 2000;  21 405-26
  • 28 Chen M G. Progress and problems in schistosomiasis control in China.  Trop Med Parasitol. 1989;  40 174-6
  • 29 Thomas J E, Bassett M T, Sigola L B, Taylor P. Relationship between bladder cancer incidence, Schistosoma haematobium infection, and geographical region in Zimbabwe.  Trans R Soc Trop Med Hyg. 1990;  84 551-3
  • 30 Anjarwalla K A. Carcinoma of the bladder in the coast province of Kenya.  East Afr Med J. 1971;  48 502-9
  • 31 Parkin D M, Srivatanakul P, Khlat M, Chenvidhya D, Chotiwan P, Insiripong S. et al . Liver cancer in Thailand. I. A case-control study of cholangiocarcinoma.  Int J Cancer. 1991;  48 323-8
  • 32 Kwak M K, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, Kensler T W. Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival.  J Biol Chem. 2003;  278 8135-45
  • 33 Khor T O, Huang M T, Prawan A, Liu Y, Hao X, Yu S. et al . Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer.  Cancer Prev Res. 2008;  1 187-91.
  • 34 Karin M. NF-kappaB and cancer: mechanisms and targets.  Mol Carcinogen. 2006;  45 355-61
  • 35 Ghosh S, May M J, Kopp E B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses.  Annu Rev Immunol. 1998;  16 225-60
  • 36 Amit S, Ben-Neriah Y. NF-kappaB activation in cancer: a challenge for ubiquitination- and proteasome-based therapeutic approach.  Semin Cancer Biol. 2003;  13 15-28
  • 37 Khor T O, Huang M T, Kwon K H, Chan J Y, Reddy B S, Kong A N. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis.  Cancer Res. 2006;  66 11 580-4
  • 38 Cho H Y, Reddy S P, Yamamoto M, Kleeberger S R. The transcription factor NRF2 protects against pulmonary fibrosis.  Faseb J. 2004;  18 1258-60
  • 39 Ishii Y, Itoh K, Morishima Y, Kimura T, Kiwamoto T, Iizuka T. et al . Transcription factor Nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema.  J Immunol. 2005;  175 6968-75
  • 40 Rangasamy T, Cho C Y, Thimmulappa R K, Zhen L, Srisuma S S, Kensler T W. et al . Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice.  J Clin Invest. 2004;  114 1248-59
  • 41 Rangasamy T, Guo J, Mitzner W A, Roman J, Singh A, Fryer A D. et al . Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice.  J Exp Med. 2005;  202 47-59
  • 42 Thimmulappa R K, Lee H, Rangasamy T, Reddy S P, Yamamoto M, Kensler T W. et al . Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis.  J Clin Invest. 2006;  116 984-95
  • 43 Liu G H, Qu J, Shen X. NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK.  Biochim Biophys Acta. 2008;  1783 713-27
  • 44 Yang H, Magilnick N, Ou X, Lu S C. Tumour necrosis factor alpha induces co-ordinated activation of rat GSH synthetic enzymes via nuclear factor kappaB and activator protein-1.  Biochem J. 2005;  391 399-408
  • 45 Bosetti C, Gallus S, La Vecchia C. Aspirin and cancer risk: an updated quantitative review to 2005.  Cancer Causes Control. 2006;  17 871-88
  • 46 Chan J M, Giovannucci E L. Vegetables, fruits, associated micronutrients, and risk of prostate cancer.  Epidemiol Rev. 2001;  23 82-6
  • 47 Chen C, Yu R, Owuor E D, Kong A N. Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death.  Arch Pharm Res. 2000;  23 605-12
  • 48 Campbell J K, Canene-Adams K, Lindshield B L, Boileau T W, Clinton S K, Erdman JW J r. Tomato phytochemicals and prostate cancer risk.  J Nutr. 2004;  134 3486S-92S
  • 49 Chiao J W, Wu H, Ramaswamy G, Conaway C C, Chung F L, Wang L. et al . Ingestion of an isothiocyanate metabolite from cruciferous vegetables inhibits growth of human prostate cancer cell xenografts by apoptosis and cell cycle arrest.  Carcinogenesis. 2004;  25 1403-8
  • 50 Miller E C, Giovannucci E, Erdman JW J r, Bahnson R, Schwartz S J, Clinton S K. Tomato products, lycopene, and prostate cancer risk.  Urol Clin North Am. 2002;  29 83-93
  • 51 Clinton S K, Emenhiser C, Schwartz S J, Bostwick D G, Williams A W, Moore B J. et al . cis-trans-Lycopene isomers, carotenoids, and retinol in the human prostate.  Cancer Epidemiol Biomarkers Prev. 1996;  5 823-33
  • 52 Giovannucci E, Ascherio A, Rimm E B, Stampfer M J, Colditz G A, Willett W C. Intake of carotenoids and retinol in relation to risk of prostate cancer.  J Natl Cancer Inst. 1995;  87 1767-76
  • 53 Hecht S S, Chung F L, Richie JP J r, Akerkar S A, Borukhova A, Skowronski L. et al . Effects of watercress consumption on metabolism of a tobacco-specific lung carcinogen in smokers.  Cancer Epidemiol Biomarkers Prev. 1995;  4 877-84
  • 54 Cohen J H, Kristal A R, Stanford J L. Fruit and vegetable intakes and prostate cancer risk.  J Natl Cancer Inst. 2000;  92 61-8
  • 55 Kristal A R, Lampe J W. Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence.  Nutr Cancer. 2002;  42 1-9
  • 56 Zhang Y, Talalay P. Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms.  Cancer Res. 1994;  54 1976s-81s
  • 57 Hecht S S. Chemoprevention of cancer by isothiocyanates, modifiers of carcinogen metabolism.  J Nutr. 1999;  129 768S-74S
  • 58 Hayes J D, Kelleher M O, Eggleston I M. The cancer chemopreventive actions of phytochemicals derived from glucosinolates.  Eur J Nutr. 2008;  47 ( 2) 73-88
  • 59 Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms.  J Biol Chem. 2001;  276 32 008-15
  • 60 Xu C, Shen G, Chen C, Gelinas C, Kong A N. Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells.  Oncogene. 2005;  24 4486-95
  • 61 Jeong W S, Kim I W, Hu R, Kong A N. Modulatory properties of various natural chemopreventive agents on the activation of NF-kappaB signaling pathway.  Pharm Res. 2004;  21 661-70
  • 62 Shen G, Khor T O, Hu R, Yu S, Nair S, Ho C T. et al . Chemoprevention of familial adenomatous polyposis by natural dietary compounds sulforaphane and dibenzoylmethane alone and in combination in ApcMin/+ mouse.  Cancer Res. 2007;  67 9937-44
  • 63 Dey M, Ribnicky D, Kurmukov A G, Raskin I. In vitro and in vivo anti-inflammatory activity of a seed preparation containing phenethylisothiocyanate.  J Pharmacol Exp Ther. 2006;  317 326-33
  • 64 Ramos-Gomez M, Dolan P M, Itoh K, Yamamoto M, Kensler T W. Interactive effects of nrf2 genotype and oltipraz on benzo[a]pyrene-DNA adducts and tumor yield in mice.  Carcinogenesis. 2003;  24 461-7
  • 65 Fahey J W, Haristoy X, Dolan P M, Kensler T W, Scholtus I, Stephenson K K. et al . Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors.  Proc Natl Acad Sci U S A. 2002;  99 7610-5
  • 66 Kensler T W, Chen J G, Egner P A, Fahey J W, Jacobson L P, Stephenson K K. et al . Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People’s Republic of China.  Cancer Epidemiol Biomarkers Prev. 2005;  14 2605-13
  • 67 Bengmark S. Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases.  JPEN J Parenter Enteral Nutr. 2006;  30 45-51
  • 68 Surh Y J, Chun K S, Cha H H, Han S S, Keum Y S, Park K K. et al . Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation.  Mutat Res. 2001;  480 – 481 243-68
  • 69 Conney A H, Lysz T, Ferraro T, Abidi T F, Manchand P S, Laskin J D. et al . Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin.  Adv Enzyme Regul. 1991;  31 385-96
  • 70 Huang M T, Ma W, Yen P, Xie J G, Han J, Frenkel K. et al . Inhibitory effects of topical application of low doses of curcumin on 12-O-tetradecanoylphorbol 13-acetate-induced tumor promotion and oxidized DNA bases in mouse epidermis.  Carcinogenesis. 1997;  18 83-8
  • 71 Kumar A, Dhawan S, Hardegen N J, Aggarwal B B. Curcumin (diferuloylmethane) inhibition of tumor necrosis factor (TNF)-mediated adhesion of monocytes to endothelial cells by suppression of cell surface expression of adhesion molecules and of nuclear factor-kappaB activation.  Biochem Pharmacol. 1998;  55 775-83
  • 72 Plummer S M, Holloway K A, Manson M M, Munks R J, Kaptein A, Farrow S. et al . Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex.  Oncogene. 1999;  18 6013-20
  • 73 Kim J H, Xu C, Keum Y S, Reddy B, Conney A, Kong A N. Inhibition of EGFR signaling in human prostate cancer PC-3 cells by combination treatment with beta-phenylethyl isothiocyanate and curcumin.  Carcinogenesis. 2006;  27 475-82
  • 74 Dorai T, Cao Y C, Dorai B, Buttyan R, Katz A E. Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo.  Prostate. 2001;  47 293-303
  • 75 Rao C V, Simi B, Reddy B S. Inhibition by dietary curcumin of azoxymethane-induced ornithine decarboxylase, tyrosine protein kinase, arachidonic acid metabolism and aberrant crypt foci formation in the rat colon.  Carcinogenesis. 1993;  14 2219-25
  • 76 Shen G, Xu C, Hu R, Jain M R, Gopalkrishnan A, Nair S. et al . Modulation of nuclear factor E2-related factor 2-mediated gene expression in mice liver and small intestine by cancer chemopreventive agent curcumin.  Mol Cancer Ther. 2006;  5 39-51
  • 77 De Marzo A M, Platz E A, Sutcliffe S, Xu J, Gronberg H, Drake C G. et al . Inflammation in prostate carcinogenesis.  Nat Rev Cancer. 2007;  7 256-69
  • 78 Coussens L M, Werb Z. Inflammation and cancer.  Nature. 2002;  420 860-7
  • 79 Herrera L A, Benitez-Bribiesca L, Mohar A, Ostrosky-Wegman P. Role of infectious diseases in human carcinogenesis.  Environ Mol Mutagen. 2005;  45 284-303
  • 80 Hold G L, El-Omar M E. Genetic aspects of inflammation and cancer.  Biochem J. 2008;  410 225-35
  • 81 Osburn W O, Kensler T W. Nrf2 signaling: An adaptive response pathway for protection against environmental toxic insults.  Mutat Res. 2007;  659 31-9
  • 82 Shpitz B, Giladi N, Sagiv E, Lev-Ari S, Liberman E, Kazanov D. et al . Celecoxib and curcumin additively inhibit the growth of colorectal cancer in a rat model.  Digestion. 2006;  74 140-4
  • 83 Adhami V M, Malik A, Zaman N, Sarfaraz S, Siddiqui I A, Syed D N. et al . Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo.  Clin Cancer Res. 2007;  13 1611-9
  • 84 Riedel S B, Fischer S M, Sanders B , Kline K. Vitamin E analog, alpha-tocopherol ether-linked acetic acid analog, alone and in combination with celecoxib, reduces multiplicity of ultraviolet-induced skin cancers in mice.  Anticancer Drugs. 2008;  19 175-81
  • 85 Zhang S, Lawson K A, Simmons-Menchaca M, Sun L, Sanders B G, Kline K. Vitamin E analog alpha-TEA and celecoxib alone and together reduce human MDA-MB-435-FL-GFP breast cancer burden and metastasis in nude mice.  Breast Cancer Res Treat. 2004;  87 111-21
  • 86 Buecher B, Thouminot C, Menanteau J, Bonnet C, Jarry A, Heymann M F. et al . Fructooligosaccharide associated with celecoxib reduces the number of aberrant crypt foci in the colon of rats.  Reprod Nutr Dev. 2003;  43 347-56
  • 87 Bobe G, Wang B, Seeram N P, Nair M G, Bourquin L D. Dietary anthocyanin-rich tart cherry extract inhibits intestinal tumorigenesis in APC (Min) mice fed suboptimal levels of sulindac.  J Agric Food Chem. 2006;  54 9322-8
  • 88 Ohishi T, Kishimoto Y, Miura N, Shiota G, Kohri T, Hara Y. et al . Synergistic effects of (−)-epigallocatechin gallate with sulindac against colon carcinogenesis of rats treated with azoxymethane.  Cancer Lett. 2002;  177 49-56
  • 89 Suganuma M, Ohkura Y, Okabe S, Fujiki H. Combination cancer chemoprevention with green tea extract and sulindac shown in intestinal tumor formation in Min mice.  J Cancer Res Clin Oncol. 2001;  127 69-72

Ah-Ng Tony Kong

Department of Pharmaceutics

Ernest-Mario School of Pharmacy

Rutgers, the State University of New Jersey

160 Frelinghuysen Road

Piscataway

NJ 08854

USA

Phone: +1-732-445-3831 x228

Fax: +1-732-445-3134

Email: KongT@rci.rutgers.edu