J Reconstr Microsurg 2008; 24(8): 551-557
DOI: 10.1055/s-0028-1088231
© Thieme Medical Publishers

Cortical Brain Mapping of Peripheral Nerves Using Functional Magnetic Resonance Imaging in a Rodent Model

Younghoon R. Cho1 , Seth R. Jones1 , Christopher P. Pawela2 , Rupeng Li2 , Dennis S. Kao1 , Marie L. Schulte3 , Matthew L. Runquist2 , Ji-Geng Yan1 , Anthony G. Hudetz3 , Safwan S. Jaradeh4 , James S. Hyde2 , Hani S. Matloub1
  • 1Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
  • 2Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
  • 3Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
  • 4Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
15. Oktober 2008 (online)

ABSTRACT

The regions of the body have cortical and subcortical representation in proportion to their degree of innervation. The rat forepaw has been studied extensively in recent years using functional magnetic resonance imaging (fMRI), typically by stimulation using electrodes directly inserted into the skin of the forepaw. Here we stimulate the nerve directly using surgically implanted electrodes. A major distinction is that stimulation of the skin of the forepaw is mostly sensory, whereas direct nerve stimulation reveals not only the sensory system but also deep brain structures associated with motor activity. In this article, we seek to define both the motor and sensory cortical and subcortical representations associated with the four major nerves of the rodent upper extremity. We electrically stimulated each nerve (median, ulnar, radial, and musculocutaneous) during fMRI acquisition using a 9.4-T Bruker scanner (Bruker BioSpin, Billerica, MA). A current level of 0.5 to 1.0 mA and a frequency of 5 Hz were used while keeping the duration constant. A distinct pattern of cortical activation was found for each nerve that can be correlated with known sensorimotor afferent and efferent pathways to the rat forepaw. This direct nerve stimulation rat model can provide insight into peripheral nerve injury.

REFERENCES

  • 1 Bertelli J A, Mira J C, Gilbert A, Michot G A, Legagneux J. Anatomical basis of rat brachial plexus reconstruction.  Surg Radiol Anat. 1992;  14 85-86
  • 2 Cao X C, Ling L J. Anatomic basis and technical aspects of a new brachial plexus avulsion injury model in the rat.  Plast Reconstr Surg. 2003;  111 2488-2490
  • 3 Gu Y D, Ma M K. Nerve transfer for treatment of root avulsion of the brachial plexus: experimental studies in a rat model.  J Reconstr Microsurg. 1991;  7 15-22
  • 4 Yan Y H, Yan J G, Sanger J R, Zhang L L, Riley D A, Matloub H S. Nerve repair at different angles of attachment: experiment in rats.  J Reconstr Microsurg. 2002;  18 703-708
  • 5 Beaulieu J-Y, Blustajn J, Teboul F et al.. Cerebral plasticity in crossed C7 grafts of the brachial plexus: an fMRI study.  Microsurgery. 2006;  26 303-310
  • 6 Hsieh J-C, Cheng H, Hsieh H-M et al.. Loss of interhemispheric inhibition on the ipsilateral primary sensorimotor cortex in patients with brachial plexus injury: fMRI study.  Ann Neurol. 2002;  51 381-385
  • 7 Chen C J, Liu H L, Wei F C, Chu N S. fMRI of the human sensorimotor cortex after toe-to-finger transplantation.  AJNR Am J Neuroradiol. 2006;  27 1617-1621
  • 8 Dubernard J M, Petruzzo R, Lanzetta M et al.. Functional results of the first human double-hand transplantation.  Ann Surg. 2003;  238 128-136
  • 9 Chen W, Ogawa S. Principle of BOLD-functional MRI. In: Moonen CTW, Bandettini PA Functional MRI. Berlin; Springer-Verlag 1999: 103-113
  • 10 Huettel S A, Song A W, McCarthy G. Functional Magnetic Resonance Imaging. Sunderland, MA; Sinauer Associates 2004
  • 11 Wade A R. The negative BOLD signal unmasked.  Neuron. 2002;  36 993-995
  • 12 Hyder F, Behar K L, Martin M A, Blamire A M, Shulman R G. Dynamic magnetic resonance imaging of the rat brain during forepaw stimulation.  J Cereb Blood Flow Metab. 1994;  14 649-655
  • 13 Hyder F, Rothman D L, Mason G F, Rangarajan A, Behar K L, Shulman R G. Oxidative glucose metabolism in rat brain during single forepaw stimulation: a spatially localized 1H[13C] nuclear magnetic resonance study.  J Cereb Blood Flow Metab. 1997;  17 1040-1047
  • 14 Keilholz S D, Silva A C, Raman M, Merkle H, Koretsky A P. Functional MRI of the rodent somatosensory pathway using multislice echo planar imaging.  Magn Reson Med. 2004;  52 89-99
  • 15 Keilholz S D, Silva A C, Raman M, Merkle H, Koretsky A P. BOLD and CBV-weighted functional magnetic resonance imaging of the rat somatosensory system.  Magn Reson Med. 2006;  55 316-324
  • 16 Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Boston; Elsevier Academic Press 2005
  • 17 Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images.  Neuroimage. 2002;  17 825-841
  • 18 Cox R W, Hyde J S. Software tools for analysis and visualization of fMRI data.  NMR Biomed. 1997;  10 171-178
  • 19 Bourgeon S, Xerri C, Coq J O. Abilities in tactile discrimination of textures in adult rats exposed to enriched or impoverished environments.  Behav Brain Res. 2004;  153 217-231
  • 20 Coq J O, Xerri C. Environmental enrichment alters organizational features of the forepaw representation in the primary somatosensory cortex of adult rats.  Exp Brain Res. 1998;  121 191-204
  • 21 Xi Z X, Wu G, Stein E A, Li S J. GABAergic mechanisms of heroin-induced brain activation assessed with functional MRI.  Magn Reson Med. 2002;  48 838-843
  • 22 Ferris C F, Kulkarni P, Sullivan Jr J M, Harder J A, Messenger T L, Febo M. Pup suckling is more rewarding than cocaine: evidence from functional magnetic resonance imaging and three dimensional computational analysis.  J Neurosci. 2005;  25 149-156
  • 23 Lu H, Gitajn L, Rea W, Yang Y, Stein E A. Quantifying BOLD effect in CBV weighted fMRI at 9.4T. In: Proceedings of the International Society for Magnetic Resonance in Medicine 2006: 2117

James S HydePh.D. 

Department of Biophysics, Medical College of Wisconsin

8701 Watertown Plank Road, Milwaukee, Wisconsin 53226

eMail: jshyde@mcw.edu

    >