References and Notes
<A NAME="RG01709ST-1A">1a</A>
Dömling A.
Ugi I.
Angew.
Chem. Int. Ed.
2000,
39:
3168
<A NAME="RG01709ST-1B">1b</A>
Tye H.
Whittaker M.
Org. Biomol. Chem.
2004,
2:
813
<A NAME="RG01709ST-1C">1c</A>
Weber L.
Illegen K.
Almstetter I.
Synlett
1999,
366
<A NAME="RG01709ST-1D">1d</A>
Newmann H.
Jacobi A.
Gordes D.
Spannenberg A.
Beller M.
J.
Am. Chem. Soc.
2001,
123:
8398
<A NAME="RG01709ST-1E">1e</A>
Kerr DJ.
Willis AC.
Flynn BL.
Org. Lett.
2004,
6:
457
<A NAME="RG01709ST-1F">1f</A>
Schauble JH.
Trauffer EA.
Deshpande PP.
Evans RD.
Synthesis
2005,
1333
<A NAME="RG01709ST-2A">2a</A>
Baird CP.
Rayner CM.
J. Chem. Soc., Perkin Trans. 1
1998,
1973
<A NAME="RG01709ST-2B">2b</A>
Payner CM. , Contemp. Org. Synth.
1996,
3:
499
<A NAME="RG01709ST-2C">2c</A>
Kondo T.-a.
Chem.
Rev.
2000,
100:
3205
<A NAME="RG01709ST-3A">3a</A>
Henry PM.
Palladium-Catalyzed
Oxidation of Hydrocarbons, In Catalysis
by Metal Complexes
Vol. 2:
Reidel;
Dordrecht:
1980.
<A NAME="RG01709ST-3B">3b</A>
Shilov AE.
Shul’pin GB.
Chem.
Rev.
1997,
97:
2879
<A NAME="RG01709ST-3C">3c</A>
Sen A.
Acc.
Chem. Res.
1998,
31:
550
<A NAME="RG01709ST-3D">3d</A>
Stahl SS.
Labinger JA.
Bercaw JE.
Angew. Chem. Int. Ed.
1998,
37:
2181
<A NAME="RG01709ST-3E">3e</A>
Groves JT.
J. Porphyrins Phthalocyanines
2000,
4:
350
<A NAME="RG01709ST-3F">3f</A>
Fekl U.
Goldberg KI.
Adv. Inorg. Chem.
2003,
54:
259
<A NAME="RG01709ST-4A">4a</A>
Gabriel S.
Ber. Dtsch Chem. Ges.
1888,
21:
1049
<A NAME="RG01709ST-4B">4b</A>
Tanner D.
Angew.
Chem., Int. Ed. Engl.
1994,
33:
599
<A NAME="RG01709ST-4C">4c</A>
Aziridines and
Epoxides in Organic Synthesis
Yudin
AK.
Wiley-VCH;
Weinheim:
2006.
<A NAME="RG01709ST-5A">5a</A>
Hu XE.
Tetrahedron
2004,
60:
2701
<A NAME="RG01709ST-5B">5b</A>
Stamm HJ.
Prakt. Chem. Chem. Ztg.
1999,
341:
319
<A NAME="RG01709ST-6A">6a</A>
Sweeney JB.
Chem. Soc. Rev.
2002,
31:
247
<A NAME="RG01709ST-6B">6b</A>
Graham MA.
Wadsworth AH.
Thornton-Pett M.
Rayner CM.
Chem.
Commun.
2001,
966
<A NAME="RG01709ST-7A">7a</A>
Hodgkinson TJ.
Shipman M.
Tetrahedron
2001,
57:
4467
<A NAME="RG01709ST-7B">7b</A>
Coleman RS.
Kong JS.
Richardson TE.
J. Am. Chem. Soc.
1999,
121:
9088
<A NAME="RG01709ST-7C">7c</A>
Coleman RS.
Li J.
Navarro A.
Angew.
Chem. Int. Ed.
2001,
40:
1736
<A NAME="RG01709ST-8A">8a</A>
Kasai M.
Kono M.
Synlett
1992,
778
<A NAME="RG01709ST-8B">8b</A>
Remers
WA.
In The Chemistry of Antitumor
Antibiotics
Vol. 1:
Wiley-Interscience;
New
York:
1979.
p.242
<A NAME="RG01709ST-9">9</A>
Katoh T.
Itoh E.
Yoshino T.
Terashima S.
Tetrahedron
1997,
53:
10229
<A NAME="RG01709ST-10A">10a</A>
Ballini R.
Rosini G.
Synthesis
1988,
833
<A NAME="RG01709ST-10B">10b</A>
Rosini G.
Ballini R.
Petrini M.
Marotta E.
Righi P.
Org.
Prep. Proced. Int.
1990,
22:
707
<A NAME="RG01709ST-10C">10c</A>
Ballini R.
Marziali P.
Mozzicafreddo A.
J.
Org. Chem.
1996,
61:
3209
<A NAME="RG01709ST-10D">10d</A>
Ballini R.
Bosica G.
Tetrahedron Lett.
1996,
37:
8027
<A NAME="RG01709ST-10E">10e</A>
Ballini R.
Bosica G.
J. Org. Chem.
1997,
62:
425
<A NAME="RG01709ST-10F">10f</A>
Ballini R.
Petrini M.
Tetrahedron
2004,
60:
1017
<A NAME="RG01709ST-10G">10g</A>
Amantini D.
Fringuelli F.
Piermatti O.
Pizzo F.
Vaccaro C.
J.
Org. Chem.
2003,
68:
9263
<A NAME="RG01709ST-10H">10h</A>
Marotta E.
Righi P.
Rosini G.
Tetrahedron
Lett.
1998,
39:
1041
<A NAME="RG01709ST-10I">10i</A>
Areces P.
Gil MV.
Higes FJ.
Romàn E.
Serrano JA.
Tetrahedron Lett.
1998,
39:
8557
<A NAME="RG01709ST-11">11</A>
Pinnick HW.
Org.
React.
1990,
38:
655
<A NAME="RG01709ST-12A">12a</A>
Fluharty AL. In The Chemistry of the Thiol Group
Part 2:
Patai S.
Wiley;
New
York:
1974.
p.589
<A NAME="RG01709ST-12B">12b</A>
Clark
JH.
Chem. Rev.
1980,
80:
429
<A NAME="RG01709ST-12C">12c</A>
Fujita E.
Nagao Y.
J. Bioorg. Chem.
1977,
6:
287
<A NAME="RG01709ST-12D">12d</A>
Trost BM.
Keeley
DE.
J.
Org. Chem.
1975,
40:
2013
<A NAME="RG01709ST-12E">12e</A>
Shono T.
Matsumura Y.
Kashimura S.
Hatanaka K.
J. Am. Chem. Soc.
1979,
101:
4752
<A NAME="RG01709ST-12F">12f</A>
Nishimura K.
Ono M.
Nagaoka Y.
Tomioka K.
J. Am. Chem. Soc.
1997,
119:
12974
<A NAME="RG01709ST-13">13</A>
Patani GA.
Chem.
Rev.
1996,
96:
3147
<A NAME="RG01709ST-14">14</A>
Yang M.-H.
Yan G.-B.
Zheng Y.-F.
Tetrahedron
Lett.
2008,
49:
6471
<A NAME="RG01709ST-15A">15a</A>
Bewick A.
Mellor JM.
Milano D.
Owton WM.
J.
Chem. Soc., Perkin Trans. 1
1985,
1045
<A NAME="RG01709ST-15B">15b</A>
Taniguchi N.
J.
Org. Chem.
2006,
71:
7874
<A NAME="RG01709ST-16A">16a</A>
Yadav LDS.
Yadav S.
Rai VK.
Tetrahedron
2006,
62:
5464
<A NAME="RG01709ST-16B">16b</A>
Yadav LDS.
Yadav S.
Rai VK.
Green Chem.
2006,
8:
455
<A NAME="RG01709ST-16C">16c</A>
Yadav LDS.
Rai A.
Rai VK.
Awasthi C.
Synlett
2007,
1905
<A NAME="RG01709ST-16D">16d</A>
Yadav LDS.
Awasthi C.
Rai VK.
Rai A.
Tetrahedron
Lett.
2007,
48:
4899
<A NAME="RG01709ST-16E">16e</A>
Yadav LDS.
Rai A.
Rai VK.
Awasthi C.
Tetrahedron
2008,
64:
1420
<A NAME="RG01709ST-16F">16f</A>
Yadav LDS.
Patel R.
Srivastava VP.
Synlett
2008,
583
<A NAME="RG01709ST-16G">16g</A>
Yadav LDS.
Rai A.
Tetrahedron
Lett.
2008,
49:
5751
<A NAME="RG01709ST-16H">16h</A>
Yadav LDS.
Rai A.
Tetrahedron
Lett.
2009,
50:
640
<A NAME="RG01709ST-17A">17a</A>
Yan S.
Gao Y.
Xing R.
Shen Y.
Liu Y.
Wu P.
Wu H.
Tetrahedron
2008,
64:
6294
<A NAME="RG01709ST-17B">17b</A>
Jang Y.-J.
Lin W.-W.
Shih Y.-K.
Liu J.-T.
Hwang M.-H.
Yao CF.
Tetrahedron
2003,
59:
4979
<A NAME="RG01709ST-18">18</A>
General Procedure
for the Synthesis of 1,2-Acetoxy-sulfenylnitroalkane 3a
A
mixture of trans-β-nitrostyrene 5a (Ar = Ph,
2 mmol), PhSSPh (2, 1 mmol), CuI (0.1 mmol),
imidazole (0.1 mmol), and AcOH (0.2 mL) in MeCN (5 mL) was stirred
at 70-80 ˚C under air for 5 h. After completion
of the reaction (monitored by TLC), H2O (10 mL) was added,
and the product was extracted with CH2Cl2 (3 × 15
mL). The combined organic extract was dried over Na2SO4,
filtered, concentrated under reduced pressure, and the crude product thus
obtained was purified by SiO2 column chromatography using
EtOAc-n-hexane (2:5) as eluent
to afford an analytically pure sample of 3a (Ar = R = Ph). Characterization
data of compound 3a is given in ref. 21.
<A NAME="RG01709ST-19A">19a</A>
Leino R.
Lonnqvist J.
Tetrahedron
Lett.
2004,
45:
8489
<A NAME="RG01709ST-19B">19b</A>
Silveira CC.
Mendes SR.
Tetrahedron
Lett.
2007,
48:
7469
<A NAME="RG01709ST-20A">20a</A>
Kwong FY.
Buchwald SL.
Org. Lett.
2002,
4:
3517
<A NAME="RG01709ST-20B">20b</A>
Klapars A.
Huang X.
Buchwald SL.
J.
Am. Chem. Soc.
2002,
124:
7421
<A NAME="RG01709ST-21">21</A>
General Procedure
for the Synthesis of 1,2-Acetoxy-sulfenylnitroalkanes 3
A
mixture of an aromatic aldehyde 1 (2 mmol),
nitromethane (2 mmol), RSSR 2 (1 mmol),
CuI (0.1 mmol), imidazole (0.1 mmol), NH4OAc (2 mmol),
and AcOH (0.2 mL) in MeCN (5 mL) was stirred at 70-80 ˚C
under air for the indicated time 6-9 h (Table
[²]
). After completion of
the reaction (monitored by TLC), H2O (10 mL) was added,
and the product was extracted with CH2Cl2 (3 × 15
mL). The combined organic phase was dried over Na2SO4,
filtered, concentrated under reduced pressure, and the crude product thus
obtained was purified by SiO2 column chromatography using
EtOAc-n-hexane (2:5) as eluent
to afford an analytically pure sample of 3.
Characterization Data of Representative Compounds
Compound 3a: yellowish solid, yield 92%,
mp 167-169 ˚C. IR (KBr): νmax = 3005,
2988, 2240, 1600, 1582, 1565, 1451, 753, 705 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 2.07 (s,
3 H, CH3CO), 5.57 (d, 1 H, J = 7.6
Hz, OCH), 5.85 (d, 1 H, J = 7.6
Hz, SCH), 7.13-7.42 (m, 10 Harom). ¹³C
NMR (100 MHz, CDCl3): δ = 21.9, 77.9,
98.4, 124.3, 125.2, 126.9, 127.9, 129.1, 135.2, 142,4, 169.7. MS
(EI): m/z = 317 [M+]. Anal.
Calcd (%) for C16H15NO4S:
C, 60.55; H, 4.76; N, 4.41. Found: C, 60.90; H, 4.47; N, 4.10.
Compound 3b:
yellowish solid, yield 88%, mp 195-197 ˚C. IR
(KBr): νmax = 3008, 2985, 2241, 1603,
1585, 1563, 1450, 845, 752, 706 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 2.03 (s,
3 H, CH3CO), 5.52 (d, 1 H, J = 7.7
Hz, OCH), 5.89 (d, 1 H, J = 7.7
Hz, SCH), 7.15-7.45 (m, 9 Harom). ¹³C
NMR (100 MHz, CDCl3): δ = 17.9, 78.7,
97.4, 123.6, 126.1, 127.8, 129.0, 132.7, 134.9, 139.4, 171.5. MS
(EI): m/z = 351 [M+]. Anal.
Calcd (%) for C16H14ClNO4S:
C, 54.62; H, 4.01; N, 3.98. Found: C, 54.24; H, 4.23; N, 3.71.
Compound 3h: yellowish solid, yield 90%,
mp 171-173 ˚C. IR (KBr): νmax = 3004,
2989, 2242, 1601, 1583, 1567, 1452, 755, 702 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 0.89 (t,
3 H, J = 7.2Hz,
CH3), 1.43 (m, 2 H, CH2),
2.05 (s, 3 H, CH3CO), 2.47 (t, 2 H, J = 7.2Hz,
CH2), 5.53 (d, 1 H, J = 7.6
Hz, OCH), 5.82 (d, 1 H, J = 7.6
Hz, SCH), 7.25-7.38 (m, 5 Harom). ¹³C
NMR (100 MHz, CDCl3) δ = 15.3, 22.1,
23.7, 31.5, 77.9, 95.0, 126.9, 127.8, 130.3, 141.4, 171.2. MS (EI): m/z = 283 [M+].
Anal. Calcd (%) for C13H17NO4S:
C, 55.11; H, 6.05; N, 4.94. Found: C, 54.74; H, 6.27; N, 4.63.
Compound 3i: yellowish solid, yield 85%,
mp 185-188 ˚C. IR (KBr): νmax = 3007,
2986, 2239, 1605, 1581, 1566, 1454, 842, 756, 703 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 0.93 (t, 3
H, J = 7.3
Hz, CH3), 1.45 (m, 2 H, CH2), 2.07 (s, 3 H, CH3CO),
2.45 (t, 2 H, J = 7.3
Hz, CH2), 5.59 (d, 1 H, J = 7.8 Hz,
OCH), 5.91 (d, 1 H, J = 7.8
Hz, SCH), 7.27-7.41 (m, 4 Harom). ¹³C
NMR (100 MHz, CDCl3): δ = 13.4, 18.3,
24.9, 29.6, 78.3, 94.8, 128.9, 129.4, 132.9, 138.6, 171.2. MS (EI): m/z = 317 [M+].
Anal. Calcd (%) for C13H16ClNO4S:
C, 49.13; H, 5.07; N, 4.41. Found: C, 49.34; H, 4.81; N, 4.78.
<A NAME="RG01709ST-22">22</A>
General Procedure
for the Synthesis of Aziridines 4
A mixture of 1,2-acetoxysulfenylnitroalkanes 3 (2 mmol) and Fe powder (12 mmol) in AcOH
(5 mL) was stirred at 45-50 ˚C for 3-4
h (Table
[³]
), then
allowed to cool at r.t. The reaction mixture was neutralized with
NaHCO3 soln, and the product was extracted with EtOAc
(3 × 10 mL). The combined organic phase
was dried over anhyd Na2SO4, the solvent was
removed under reduced pressure, and the crude product thus obtained
was purified by SiO2 column chromatography using EtOAc-n-hexane (3:7) as eluent to afford an
analytically pure sample of 4.
Characterization Data of Representative Compounds
Compound 4a: white needles, yield 82%,
mp 63-65 ˚C. IR (KBr): νmax = 3390,
3009, 2985, 1516, 1452, 1449, 1341, 755, 705, 638 cm-¹. ¹H
NMR (400 MHz. CDCl3) δ = 1.70 (1 H,
br s, NH, exch. D2O), 2.97 (d, 1 H, J = 3.9
Hz, 2-H), 3.09 (d, 1 H, J = 3.9
Hz, 3-H), 7.04-7.21 (m, 10 Harom). ¹³C
NMR (100 MHz, CDCl3): δ = 43.7, 44.9,
125.3, 126.8, 127.5, 128.9, 129.8, 130.9, 136.7, 138.4. MS (EI): m/z = 241 [M+]. Anal.
Calcd (%) for C14H13NS: C, 73.97;
H, 5.76; N, 6.16. Found: C, 73.70; H, 5.97; N, 6.45.
<A NAME="RG01709ST-23A">23a</A>
Kamimura A.
Mitsudera H.
Asano S.
Kakehi A.
J.
Org. Chem.
1999,
64:
6353
<A NAME="RG01709ST-23B">23b</A>
Albertshofer K.
Thayumanavan R.
Utsumi N.
Tanaka F.
Barbas CF.
Tetrahedron Lett.
2007,
48:
693
<A NAME="RG01709ST-24A">24a</A>
Gaillot J.-M.
Gelas-Mialhe Y.
Veissere R.
Chem. Lett.
1983,
1137
<A NAME="RG01709ST-24B">24b</A>
Bassindale AR.
Kyle PA.
Soobramanien M.-C.
Taylor PG.
J.
Chem. Soc., Perkin Trans. 1
2000,
1173
<A NAME="RG01709ST-24C">24c</A>
Maclaren AB.
Sweeney JB.
Org.
Lett.
1999,
1:
1339