References and Notes
<A NAME="RG00709ST-1A">1a</A>
Karpov AS.
Müller TJJ.
Synthesis
2003,
2815
<A NAME="RG00709ST-1B">1b</A>
Bevk D.
Grošelj U.
Meden A.
Svete J.
Stanovnik B.
Helv.
Chim. Acta
2007,
90:
1737
<A NAME="RG00709ST-1C">1c</A>
Sagar R.
Kim
M.-J.
Park SB.
Tetrahedron
Lett.
2008,
49:
5080
<A NAME="RG00709ST-1D">1d</A>
Xie F.
Zhao H.
Zhao L.
Lou L.
Hu L.
Bioorg. Med. Chem.
Lett.
2009,
19:
275
<A NAME="RG00709ST-2A">2a</A>
Brown DJ. In Comprehensive
Heterocyclic Chemistry
Vol. 3:
Katritzky AR.
Rees CW.
Pergamon
Press;
Oxford:
1984.
Chap. 2.13.
<A NAME="RG00709ST-2B">2b</A>
Eicher T.
Hauptmann S.
Chemie
der Heterocyclen
Thieme;
Stuttgart:
1994.
p.398
<A NAME="RG00709ST-2C">2c</A>
Gilchrist TL.
Heterocyclenchemie
Neunhoeffer H.
Wiley-VCH;
Weinheim:
1995.
p.270
<A NAME="RG00709ST-2D">2d</A>
Hoffmann
MG. In Houben-Weyl, Methoden der Organischen Chemie
Vol.
E9:
Schaumann E.
Thieme;
Stuttgart:
1996.
<A NAME="RG00709ST-2E">2e</A>
Angerer S.
Science of Synthesis
Vol.
16:
Yamamoto Y.
Thieme;
Stuttgart:
2004.
p.379
Recent pyrimidine derivative syntheses
starting from enamides:
<A NAME="RG00709ST-3A">3a</A>
Barthakur MG.
Borthakur M.
Devi P.
Saikia CJ.
Saikia A.
Bora U.
Chetia A.
Boruah RC.
Synlett
2007,
223
<A NAME="RG00709ST-3B">3b</A>
Hill MD.
Movassaghi M.
Chem. Eur.
J.
2008,
14:
6836
For reviews on alkoxyallenes, see:
<A NAME="RG00709ST-4A">4a</A>
Zimmer R.
Synthesis
1993,
165
<A NAME="RG00709ST-4B">4b</A>
Zimmer R.
Khan FA.
J. Prakt. Chem.
1996,
338:
92
<A NAME="RG00709ST-4C">4c</A>
Reissig H.-U.
Hormuth S.
Schade W.
Okala Amombo MG.
Watanabe T.
Pulz R.
Hausherr A.
Zimmer R.
J. Heterocycl.
Chem.
2000,
37:
597
<A NAME="RG00709ST-4D">4d</A>
Zimmer R.
Reissig H.-U. In Modern
Allene Chemistry
Vol. 2:
Krause N.
Hashmi ASK.
Wiley-VCH;
Weinheim:
2004.
p.425
<A NAME="RG00709ST-4E">4e</A>
Reissig H.-U.
Zimmer R.
Science
of Synthesis
Vol. 44:
Krause N. ,
Ed.; Thieme;
Stuttgart:
2007.
p.301
<A NAME="RG00709ST-4F">4f</A>
Brasholz M.
Reissig H.-U.
Zimmer R.
Acc.
Chem. Res.
2009,
42:
45
For selected recent applications developed by our group,
see:
<A NAME="RG00709ST-4G">4g</A>
Al-Harrasi A.
Reissig H.-U.
Angew. Chem. Int. Ed.
2005,
44:
6227 ; Angew. Chem. 2005, 117, 6383
<A NAME="RG00709ST-4H">4h</A>
Kaden S.
Reissig H.-U.
Org. Lett.
2006,
8:
4763
<A NAME="RG00709ST-4I">4i</A>
Sörgel S.
Azap C.
Reissig H.-U.
Org.
Lett.
2006,
8:
4875
<A NAME="RG00709ST-4J">4j</A>
Brasholz M.
Reissig H.-U.
Angew. Chem. Int. Ed.
2007,
46:
1634 ; Angew. Chem. 2007, 119, 1659
<A NAME="RG00709ST-4K">4k</A>
Gwiazda M.
Reissig H.-U.
Synthesis
2008,
990
<A NAME="RG00709ST-5A">5a</A>
Flögel O.
Dash J.
Brüdgam I.
Hartl H.
Reissig
H.-U.
Chem. Eur. J.
2004,
10:
4283
<A NAME="RG00709ST-5B">5b</A>
Flögel O, and
Reissig H.-U. inventors; DE
103 36 497.8 A1.
<A NAME="RG00709ST-5C">5c</A>
Dash J.
Lechel T.
Reissig H.-U.
Org.
Lett.
2007,
9:
5541
<A NAME="RG00709ST-5D">5d</A>
Lechel T.
Dash J.
Reissig H.-U.
Eur.
J. Org. Chem.
2008,
3647
<A NAME="RG00709ST-6">6</A>
Typical Procedure
for the Synthesis of Enamide 4c
Trimethylsilylethoxyallene
(2.45 g, 15.7 mmol) was dissolved in Et2O (32 mL) and n-BuLi (6.90 mL, 17.2 mmol, 2.5 M in
hexanes) was added at -40 ˚C. After 25
min at
-50 ˚C to -40 ˚C
benzonitrile (2.40 mL, 23.5 mmol) was added. After stirring for
4 h at this temperature benzoic acid (5.74 g, 47.0 mmol, dissolved
in 15 mL Et2O) was added, and the mixture was warmed
up over night to r.t. The mixture was quenched with sat. aq NaHCO3 soln
and extracted three times with Et2O (30 mL). The combined organic
layers were dried with Na2SO4, filtered, and concentrated.
Column chromatography (SiO2, EtOAc-hexane, 1:10)
and subsequent recrystallization in hexane provided 4c (2.14
g, 36%) as colorless solid (mp 65 ˚C).
Analytical Data for (
E
)-
N
-{3-Oxo-1-phenyl-2-[2-(trimethylsilyl)ethoxy]but-1-enyl}benzamide
(4c)
¹H NMR (400 MHz, CDCl3): δ = -0.15
(s, 9 H, SiMe3), 0.66-0.71 (m, 2 H, CH2Si),
2.40 (s, 3 H, CH3), 3.33-3.38 (m, 2 H, OCH2),
7.36-7.55, 7.95-7.98 (2 m, 10 H, Ph), 12.40 (br s,
1 H, NH) ppm. ¹³C NMR (101 MHz, CDCl3): δ = -1.7
(q, SiMe3), 18.6 (t, CH2Si), 27.5 (q, CH3),
71.5 (t, OCH2), 127.8, 128.4, 128.68, 128.73, 132.3,
132.6, 133.7 (5 d, 2 s, Ph)*, 137.6, 143.3 (2 s, C=C),
165.2, 202.9 (2 s, C=O) ppm; *overlapping Ph signals.
IR (KBr): ν = 3400 (NH), 3110-2995
(=CH), 2960-2895 (CH), 1730-1580 (C=O,
C=C)
cm-¹. Anal.
Calcd for C22H27NO3Si (381.5):
C, 69.25; H, 7.13; N, 3.67. Found: C, 69.05; H, 7.08; N, 3.69.
<A NAME="RG00709ST-7">7</A>
Ferrini S.
Ponticelli F.
Taddei M.
Org.
Lett.
2007,
9:
69
<A NAME="RG00709ST-8">8</A>
Typical Procedure
for the Synthesis of Pyrimidine 7c
Enamide 4c (350 mg, 0.917 mmol) and NH4OAc
(566 mg, 7.34 mmol) were placed in an ACE-sealed tube. The mixture was
dissolved in MeOH (5.0 mL) and stirred for 1 d at 65 ˚C. After
addition of H2O and CH2Cl2 (5.0
mL) the layers were separated, and the aqueous layer was extracted
twice with CH2Cl2 (5.0 mL). The combined organic
layers were dried with Na2SO4, filtered, and
concentrated. Column chromatography (SiO2, EtOAc-hexane,
1:10) provided 7c (285 mg, 86%)
as colorless oil.
Analytical Data
for 4-Methyl-2,6-diphenyl-5-[2-(trimethylsilyl)ethoxy]pyrimidine
(7c)
¹H NMR (500 MHz, CDCl3): δ = -0.08
(s, 9 H, SiMe3), 0.97-1.06 (m, 2 H, CH2Si),
2.64 (s, 3 H, CH3), 3.66-3.71 (m, 2 H, OCH2),
7.41-7.53, 8.16-8.19, 8.47-8.50 (3 m,
10 H, Ph) ppm. ¹³C NMR (101 MHz, CDCl3): δ = -1.6
(q, SiMe3), 18.9 (t, CH2Si), 19.6 (q, CH3),
71.1 (t, OCH2), 128.0, 128.3, 128.4, 129.1, 129.77, 129.84,
136.4, 137.8 (6 d, 2 s, Ph), 148.2 (s, C-5), 156.6, 158.7, 162.4
(3 s, C-2, C-4, C-6) ppm. IR (film): ν = 3090-2870
(=CH, CH), 1680-1540 (C=C, C=N)
cm-¹. Anal. Calcd for C22H26N2OSi
(362.5): C, 72.88; H, 7.23; N, 7.73. Found: C, 72.63; H, 7.12; N,
7.78.
<A NAME="RG00709ST-9">9</A>
Typical Procedure
for the Synthesis of Pyrimidyl Nonaflate 10
Pyrimidine 7c (285 mg, 0.786 mmol) was dissolved in
a 1:2 mixture of TFA and CH2Cl2 (3.0 mL) and
stirred for 30 min at r.t. After addition of H2O and
CH2Cl2 (5.0 mL) the layers were separated,
and the aqueous layer was extracted twice with CH2Cl2 (8.0
mL). The combined organic layers were dried with Na2SO4,
filtered, and concentrated. The crude product was dissolved in THF
(5.0 mL) and NaH (94 mg 2.36 mmol) was added. After 5 min NfF (0.42
mL, 2.36 mmol) was added, and the reaction mixture was stirred over night
at r.t. After slowly addition of H2O and EtOAc (5.0 mL)
the layers were separated, and the aqueous layer was extracted twice
with EtOAc (8.0 mL). The combined organic layers were dried with
Na2SO4, filtered, and concentrated. Column
chromatography (SiO2, EtOAc-hexane, 1:10) provided 10 (257 mg, 60%) as colorless
oil.
Analytical Data for 4-Methyl-2,6-diphenylpyrimidin-5-yl
1,1,2,2,3,3,4,4,4-Nonafluorobutane-1-sulfonate (10)
¹H
NMR (500 MHz, CDCl3): δ = 2.77
(s, 3 H, CH3), 7.49-7.56, 7.89-7.91,
8.52-8.55 (3 m, 10 H, Ph) ppm. ¹³C
NMR (101 MHz, CDCl3): δ = 20.5
(q, CH3), 128.56, 128.58, 128.7, 129.5, 130.8, 129.9,
134.3, 136.3 (6 d, 2 s, Ph), 140.7 (s, C-5), 159.0, 162.0, 162.3
(3 s, C-2, C-4, C-6) ppm. ¹9F NMR (470 MHz,
CDCl3): δ = -80.6, -109.8, -120.6, -125.8 (4
m, Nf) ppm. IR (film): ν = 3095-2855
(=CH, CH), 1605-1560 (C=C, C=N)
cm-¹. ESI-TOF: m/z calcd
for [M + H]+: 545.0576;
found: 545.0607. Anal. Calcd for C21H13F9N2O3S (544.4):
C, 46.33; H, 2.41; N, 5.15. Found: C, 46.93; H, 2.18; N, 5.06.
<A NAME="RG00709ST-10">10</A> For recent applications of the particularly
useful alkenyl and aryl nonaflates, see:
Högermeier J.
Reissig H.-U.
Chem. Eur.
J.
2007,
13:
2410 ;
and references cited therein