References and Notes
<A NAME="RW18308ST-1A">1a</A>
Hou XL.
Yang Z.
Wong HNC. In Progress
in Heterocyclic Chemistry
Vol. 15:
Gribble GW.
Gilchrist TL.
Pergamon;
Oxford:
2003.
p.167-205
<A NAME="RW18308ST-1B">1b</A>
Merritt AT.
Ley SV.
Nat.
Prod. Rep.
1992,
9:
243
<A NAME="RW18308ST-1C">1c</A>
Padwa A.
Ishida M.
Muller CL.
Murphree SS.
J. Org. Chem.
1992,
57:
1170
<A NAME="RW18308ST-1D">1d</A>
Sargent MV.
Dean FM. In Comprehensive
Heterocyclic Chemistry
Vol. 3:
Bird CW.
Cheeseman GWH.
Pergamon
Press;
Oxford UK:
1984.
p.599-656
<A NAME="RW18308ST-1E">1e</A>
Dean FM. In Advances in Heterocyclic Chemistry
Vol.
31:
Katritzky AR.
Academic
Press;
New York:
1983.
p.237-344
<A NAME="RW18308ST-1F">1f</A>
Natural Products
Chemistry
Vol. 1-3:
Nakanishi K.
Goto T.
Ito S.
Natori S.
Nozoe S.
Kodansha,
Ltd.;
Tokyo:
1974.
<A NAME="RW18308ST-2A">2a</A>
Friedrichsen W. In Comprehensive Heterocyclic Chemistry
II
Vol. 2:
Katritzky AR.
Rees CW.
Scriven EFV.
Pergamon;
Oxford:
1996.
p.351-393
<A NAME="RW18308ST-2B">2b</A>
Paquette LA.
Astles PC.
J.
Org. Chem.
1993,
58:
165
<A NAME="RW18308ST-2C">2c</A>
Lipshutz BH.
Chem. Rev.
1986,
86:
795
<A NAME="RW18308ST-3A">3a</A>
Nakano M.
Tsurugi H.
Satoh T.
Miura M.
Org.
Lett.
2008,
10:
1851
<A NAME="RW18308ST-3B">3b</A>
Kirsch SF.
Org. Biomol. Chem.
2006,
4:
2076
<A NAME="RW18308ST-3C">3c</A>
Kawai H.
Oi S.
Inoue Y.
Heterocycles
2006,
67:
101
<A NAME="RW18308ST-3D">3d</A>
Brown RCD.
Angew. Chem. Int. Ed.
2005,
44:
850
<A NAME="RW18308ST-3E">3e</A>
Jeevanandam A.
Ghule A.
Ling Y.-C.
Curr. Org.
Chem.
2002,
6:
841
<A NAME="RW18308ST-3F">3f</A>
Friedrichsen W.
Furans and Benzo Derivatives:
Synthesis, In Comprehensive Heterocyclic
Chemistry II
Vol. 2:
Katritzky AR.
Rees
CW.
Scriven EFV.
Pergamon
Press;
Oxford:
1996.
p.351-394
For selected examples, see:
<A NAME="RW18308ST-4A">4a</A>
Arimitsu S.
Jacobsen
JM.
Hammond GB.
J. Org. Chem.
2008,
73:
2886
<A NAME="RW18308ST-4B">4b</A>
Sniady A.
Durham A.
Morreale MS.
Wheeler
KA.
Dembinski R.
Org. Lett.
2007,
9:
1175
<A NAME="RW18308ST-4C">4c</A>
Zhou C.-Y.
Chan PWH.
Che C.-M.
Org.
Lett.
2006,
8:
325
<A NAME="RW18308ST-4D">4d</A>
Ma S.
Gu Z.
Yu Z.
J.
Org. Chem.
2005,
7:
6291
<A NAME="RW18308ST-4E">4e</A>
Suhre MH.
Reif M.
Kirsch SF.
Org. Lett.
2005,
7:
3925
<A NAME="RW18308ST-4F">4f</A>
Sromek AW.
Rubina M.
Gevorgyan V.
J. Am. Chem. Soc.
2005,
127:
10500
<A NAME="RW18308ST-4G">4g</A>
Sniady A.
Wheeler
KA.
Dembinski R.
Org. Lett.
2005,
7:
1769
<A NAME="RW18308ST-4H">4h</A>
Hashmi ASK.
Sinha P.
Adv.
Synth. Catal.
2004,
346:
432
<A NAME="RW18308ST-4I">4i</A>
Sromek AW.
Kel’in AV.
Gevorgyan V.
Angew. Chem. Int. Ed.
2004,
43:
2280
<A NAME="RW18308ST-4J">4j</A>
Trost BM.
McIntosh MC.
J.
Am. Chem. Soc.
1995,
117:
7255
<A NAME="RW18308ST-4K">4k</A>
Hashmi
ASK.
Angew. Chem., Int. Ed. Engl.
1995,
34:
1581
<A NAME="RW18308ST-5A">5a</A>
Feng X.
Tan Z.
Chen D.
Shen Y.
Guo C.
Xiang J.
Zhu C.
Tetrahedron
Lett.
2008,
49:
4110
<A NAME="RW18308ST-5B">5b</A>
Sanz R.
Miguel D.
Martinez A.
Alvarez-Gutierrez JM.
Rodriguez F.
Org. Lett.
2007,
9:
727
<A NAME="RW18308ST-5C">5c</A>
Duan X.-H.
Liu X.-Y.
Guo L.-N.
Liao M.-C.
Liu M.-W.
Liang Y.-M.
J. Org. Chem.
2005,
70:
6980
<A NAME="RW18308ST-6">6</A>
Wang A.
Jiang H.
J. Am. Chem. Soc.
2008,
130:
5030
<A NAME="RW18308ST-7">7</A>
General Experimental
Procedure
The reaction was carried out in a HF-15
autoclave. Pd(OAc)2 (4.49 mg, 0.02 mmol), Zn(OTf)2 (98.3
mg, 0.3 mmol), MeOH (3 mL), and alkyne (1 mmol) were added into
a 15 mL autoclave in sequence. Oxygen was pumped into the autoclave
by a cooling pump to reach the desired pressure, then the autoclave
was heated by oil bath under magnetic stirring for the desired reaction
time. After the reaction finished, the autoclave was allowed to
cool to 0 ˚C. Residual O2 was vented,
and the surplus was filtrated and condensed under reduced pressure.
The product was purified by chromatography on a SiO2 column
using light PE-CH2Cl2
as
eluent.
<A NAME="RW18308ST-8">8</A>
Spectroscopic Data
for Tetrasubstituted Furans
2,3,4,5-Tetrakis(4-methoxyphenyl)furan
¹³
Mp 206-208 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 3.78 (s, 12
H), 6.77 (d, J = 6.4
Hz, 4 H), 6.79 (d, J = 7.2
Hz, 4 H), 7.04 (d, J = 8.8
Hz, 4 H), 7.42 (d, J = 9.2
Hz, 4 H) ppm.
¹³C NMR (100
MHz, CDCl3): δ = 125.1, 125.8, 127.1,
127.3, 128.3, 128.5, 130.4, 130.9, 133.1, 147.7 ppm. MS (EI, 70 eV): m/z (%) = 492
(28) [M+], 318 (100), 275
(31), 135 (47).
2,3,4,5-Tetrakis(4-fluorophenyl)furan
¹4
¹H NMR (400
MHz, CDCl3): δ = 6.93 (m, 8 H), 7.05-7.08 (m,
4 H), 7.41-7.44 (m, 4 H) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 115.6 (t, J = 80 Hz),
123.5, 126.7, 127.6, 127.7, 128.6, 131.9, 147.1, 160.9, 163.4 ppm.
MS (EI, 70 eV):
m/z (%) = 444
(100) [M+], 321 (73), 123
(69), 95 (55).
2,3,4,5-Tetrakis[4-(trifluoromethyl)phenyl]furan
¹³
Mp
195-197 ˚C. ¹H NMR (400 MHz,
CDCl3): δ = 7.24 6 (d, J = 8.0 Hz,
4 H), 7.55-7.57 (m, 12 H) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 119.9, 122.6,
125.1, 125.3, 125.7, 125.9, 126.2, 127.3, 128.0, 129.0, 129.8, 129.9,
130.1, 130.5, 130.8, 133.0, 135.6, 148.0 ppm. MS (EI, 70 eV): m/z (%) = 644
(46) [M+], 471 (13), 173 (100),
145 (33).
2,3,4,5-Tetra-
m
-tolylfuran
¹5
Mp 100-102 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 2.17 (s,
6 H), 2.27 (s, 6 H), 6.91-7.22 (m, 12 H), 7.62-7.66
(m, 4 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 21.3,
29.7, 123.0, 127.0, 127.6, 127.9, 128.1, 129.0, 129.2, 130.1, 130.2,
133.7, 135.3, 136.4, 137.9, 138.14, 144.2 ppm. MS (EI, 70 eV):
m/z (%) = 428
(100) [M+], 309 (21), 119
(65), 91 (18).
<A NAME="RW18308ST-9">9</A>
Procedure for Cyclization
of 1,4-Dione A
The reaction was carried out in a HF-15
autoclave. Pd(OAc)2 (4.49 mg, 0.02 mmol), Zn(OTf)2 (98.3
mg, 0.3 mmol), MeOH (3 mL), and 1,4-dione A (388
mg, 1 mmol) were added into a 15 mL autoclave in sequence. Oxygen
was pumped into the autoclave by a cooling pump to reach the desired
pressure, then the autoclave was heated by oil bath under magnetic
stirring for the desired reaction time. After the reaction finished,
the autoclave was allowed to cool to
0 ˚C. Oxygen
was vented, and the surplus was filtrated and condensed under reduced
pressure. The product was purified by chromatography on a SiO2 column
using light PE-CH2Cl2 as eluent to
give 2a in 72% yield.
<A NAME="RW18308ST-10">10</A>
Spectroscopic
Data for (
Z
)-1,2,3,4-Tetraphenylbut-2-ene-1,4-dione
¹6
Mp
216-217 ˚C. ¹H NMR (400 MHz,
CDCl3): δ = 7.14-7.40 (m,
16 H), 7.82-7.84 (m, 4 H) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 128.3, 128.4,
128.5, 128.6, 129.8, 130.0, 133.0, 135.2, 136.3, 144.6, 196.9 ppm.
MS (EI, 70 eV): m/z (%) = 388
(12) [M+], 178 (9), 105 (100),
77 (43).
The formation of 1,4-dione from
tetraphenylcyclobuta-dienenickel and palladium complex, see:
<A NAME="RW18308ST-11A">11a</A>
Eisch JJ.
Galle JE.
Aradi AA.
Boleslawski MP.
J.
Organomet. Chem.
1986,
312:
399
<A NAME="RW18308ST-11B">11b</A>
Hoberg H.
Fröhlich C.
J. Organomet.
Chem.
1980,
197:
105
For selected examples on cyclocondensation
of 1,4-dicarbonyl compounds to synthesize furans, see:
<A NAME="RW18308ST-12A">12a</A>
Yin G.
Wang Z.
Chen A.
Gao M.
Wu A.
Pan Y.
J.
Org. Chem.
2008,
73:
3377
<A NAME="RW18308ST-12B">12b</A>
Banik BK.
Samajdar S.
Banik I.
J. Org. Chem.
2004,
69:
213
<A NAME="RW18308ST-12C">12c</A>
Kiryanov AA.
Sampson P.
Seed AJ.
J. Org. Chem.
2001,
66:
7925
<A NAME="RW18308ST-12D">12d</A>
Trost BM.
Doherty GA.
J.
Am. Chem. Soc.
2000,
122:
3801
<A NAME="RW18308ST-13">13</A>
Nakano M.
Tsurugi H.
Satoh T.
Miura M.
Org. Lett.
2008,
10:
1851
<A NAME="RW18308ST-14">14</A>
Li ZF.
Zhang YM.
Liu YK.
J.
Indian Chem. Soc.
2002,
79:
188
<A NAME="RW18308ST-15">15</A>
Krepski LR.
Heilmann SM.
Rasmussen JK.
Tumey ML.
Smith HK.
Synth. Commun.
1986,
16:
377
<A NAME="RW18308ST-16">16</A>
Wilson RM.
Hengge AC.
Ataei A.
Ho DM.
J. Am. Chem. Soc.
1991,
113:
7240