Synlett 2009(8): 1326-1330  
DOI: 10.1055/s-0028-1088135
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

ZnO Nanoparticles as an Efficient Catalyst for the One-Pot Synthesis of α-Amino Phosphonates

Mohammad Zaman Kassaee*, Farnaz Movahedi, Hassan Masrouri
Department of Chemistry, Tarbiat Modares University, P. O. Box 14155-4838, Tehran, Iran
Fax: +98(21)8006544; e-Mail: kassaeem@modares.ac.ir;
Further Information

Publication History

Received 21 December 2008
Publication Date:
08 April 2009 (online)

Abstract

Zinc oxide nanoparticles (ZnO NPs, ca. 22 nm) were used as an effective catalyst in the solvent-free, three-component couplings of aldehydes, aromatic amines and dialkyl phosphites at room temperature to produce various α-amino phosphonates. Compared to known methods, satisfactory results were obtained with high yields through a simple experimental procedure. The catalyst was recycled and reused five times with minor decrease in its catalytic activity.

    References and Notes

  • 1 Yamaguchi A. Uejo F. Yoda T. Uchida T. Tanamura Y. Yamashita T. Teramae N. Nat. Mater.  2004,  3:  337 
  • 2 Claus P. Mohr AC. Hofmeister H. J. Am. Chem. Soc.  2000,  122:  11430 
  • 3 Kidwai M. Bansal V. Mirsha NK. Kumar A. Mozumdar S. Synlett  2007,  1581 
  • 4 Parida KM. Dash SS. Das DP. J. Colloid Interface Sci.  2006,  298:  787 
  • 5 Roucoux A. Schulz J. Patin H. Chem. Rev.  2002,  102:  3757 
  • 6 Hernández-Santos D. González-García MB. García AC. Electroanal.  2002,  14:  1225 
  • 7 Widegren JA. Finke RG. J. Mol. Catal. A: Chem.  2003,  191:  187 
  • 8 Hosseini-Sarvari M. Etemad S. Tetrahedron  2008,  64:  5519 
  • 9 Hosseini-Sarvari M. Sharghi H. Etemad S. Helv. Chim. Acta  2008,  91:  715 
  • 10 Mirjafary Z. Saeidian H. Sadeghi A. Matloubi Moghaddam F. Catal. Commun.  2008,  9:  299 
  • 11 Wang J. Jiang Z. Zhang Z. Xie Y. Wang X. Xing Z. Xu R. Zhang X. Ultrason. Sonochem.  2008,  15:  768 
  • 12 Birum GH. J. Org. Chem.  1974,  39:  209 
  • 13 Fields SC. Tetrahedron  1999,  55:  12237 
  • 14 Barder A. Aldrichim. Acta  1988,  21:  15 
  • 15 Shuman CF. Vrang L. Danielson UH. J. Med. Chem.  2004,  47:  5953 
  • 16 Pierce AC. Rao G. Bemis GW. J. Med. Chem.  2004,  47:  2768 
  • 17 Maier L. Diel PJ. Phosphorus, Sulfur Silicon Relat. Elem.  1991,  57:  57 
  • 18 Allen JG. Atherton FR. Hall MJ. Hasall CH. Holmes SW. Lambert RW. Nisbet LJ. Ringrose PS. Nature (London)  1978,  272:  56 
  • 19 Kabachnik MJ. Medved T. Izv. Akad. Nauk SSSR, Ser. Khim.  1953,  1126 
  • 20 Fields EK. J. Am. Chem. Soc.  1952,  74:  1528 
  • 21 Heydari A. Karimian A. Ipaktschi J. Tetrahedron Lett.  1998,  39:  6729 
  • 22 Azizi N. Saidi MR. Eur. J. Org. Chem.  2003,  4630 
  • 23 Laschat S. Kunz H. Synthesis  1992,  90 
  • 24 Ranu BC. Hajra A. Jana U. Org. Lett.  1999,  1:  1141 
  • 25 Hosseini-Sarvari M. Tetrahedron  2008,  64:  5459 
  • 26 Manabe K. Kobayashi S. Chem. Commun.  2000,  669 
  • 27 Reddy YT. Reddy PN. Kumar BS. Rajput P. Sreenivasulu N. Rajitha B. Phosphorus, Sulfur Silicon Relat. Elem.  2007,  182:  161 
  • 28 Chandrasekhar S. Prakash SJ. Jagadeshwar V. Narsihmulu C. Tetrahedron Lett.  2001,  42:  5561 
  • 29 Akiyama T. Sanada M. Fuchibe K. Synlett  2003,  1463 
  • 30 Heydari A. Arefi A. Catal. Commun.  2007,  8:  1023 
  • 31 Lee S. Park JH. Kang J. Lee JK. Chem. Commun.  2001,  1698 
  • 32 Bhagat S. Chakraborty AK. J. Org. Chem.  2007,  72:  1263 
  • 33 Gröger H. Hammer B. Chem. Eur. J.  2000,  6:  943 
  • 34 Merino P. Marqués-López E. Herrera RP. Adv. Synth. Catal.  2008,  350:  1195 
  • 35a Zhu Y. Zhou Y. Appl. Phys. A  2008,  92:  275 
  • 35b

    Under solid-state reaction conditions, Zn(MeCOO)2˙2H2O (0.01 mol, 2.19 g) was ground for 5 min and then mixed with NaOH (0.04 mol, 1.60 g). After the mixture was ground for 30 min, the product was washed with deionized H2O (3 ×) and EtOH to remove the by-products. The final product was first dried at 80 ˚C for 1 h and then was calcined in air at 600 ˚C for 2 h to decompose Zn(OH)2 into ZnO and H2O.

  • 36 Cullity BD. Stock SR. Elements of X-ray Diffraction   3rd ed.:  Prentice-Hall; Englewood Cliffs NJ: 2001. 
  • 38 Elmakssoudi A. Zahouily M. Mezdar A. Rayadh A. Sebti S. C. R. Chimie  2005,  8:  1954 
  • 39 Bhattacharya AK. Kalpeshkumar CR. Tetrahedron Lett.  2008,  49:  2598 
  • 40 Kaboudin B. Sorbiun M. Tetrahedron Lett.  2007,  48:  9015 
37

General Procedure for the Synthesis of α-Amino Phosphonate Derivatives: ZnO nanoparticles (20% mol) were added to a mixture of aldehyde (1 mmol), amine (1 mmol) and dialkyl phosphite (1 mmol), at r.t., followed
by 8-18 h of stirring. The progress of the reaction was monitored by TLC (eluent: EtOAc-n-hexane, 30:70). After the reaction completion, CH2Cl2 (10 mL) was added to the reaction mixture and the mixture was centrifuged at 2000-3000 rpm, at 10 ˚C for 5 min to remove the catalyst. Evaporation of the reaction solvent, followed by column chromatography, afforded the pure α-amino phosphonates. Spectral data for selected products, 4b: white solid; mp 89-90 ˚C. ¹H NMR (500 MHz, CDCl3): δ = 1.14 (t, ³ J = 7.0 Hz, 3 H), 1.29 (t, ³ J = 7.1 Hz, 3 H), 3.66-3.68 (m, 1 H), 3.90-3.93 (m, 1 H), 4.11-4.12 (m, 2 H), 4.79 (d, ² J HP = 24.3 Hz, 1 H), 4.81 (br, 1 H), 6.58-6.67 (m, 3 H), 7.07-7.08 (m, 2 H), 7.29-7.31 (m, 3 H), 7.45-7.46 (m, 2 H). ¹³C NMR (125 MHz, CDCl3): δ = 16.12 (d, ³ J PC = 5.6 Hz, Me), 16.26 (d, ³ J PC = 5.7 Hz, Me), 56.71 (d, ¹ J PC = 151.3 Hz, CH), 63.21 (d, ² J PC = 7.0 Hz, OCH2), 63.97 (d, ² J PC = 6.9 Hz, OCH2), 114.28 (CH), 117.27 (CH), 127.34 (d, ³ J PC = 5.6 Hz, CH), 128.51 (d, 4 J PC = 2.9 Hz, CH), 128.84 (CH), 130.04 (CH), 134.11 (C), 146.73 (d, ³ J PC = 14.3 Hz, C). 4d: white solid; mp 59-60 ˚C. ¹H NMR (500 MHz, CDCl3): δ = 1.15 (t, ³ J = 6.9 Hz, 3 H), 1.28 (t, ³ J = 7.0 Hz, 3 H), 3.71-3.74 (m, 1 H), 3.79-3.83 (m, 1 H), 4.06-4.10 (m, 2 H), 4.79 (d, ² J HP = 24.3 Hz, 1 H), 4.88 (br, 1 H), 6.49 (d, ³ J = 7.6 Hz, 2 H), 6.73 (t, ³ J = 7.2 Hz, 1 H), 7.07 (t, ³ J = 7.4 Hz, 2 H), 7.33 (dd, ³ J = 2.3, 8.0 Hz, 2 H), 7.43 (d, ³ J = 8.0 Hz, 2 H). ¹³C NMR (125 MHz, CDCl3): δ = 16.44 (d, ³ J PC = 5.5 Hz, Me), 16.61 (d, ³ J PC = 5.6 Hz, Me), 63.05 (d, ² J PC = 7.1 Hz, OCH2), 63.27 (d, ² J PC = 6.9 Hz, OCH2), 63.65 (d, ¹ J PC = 151.1 Hz, CH), 116.09 (CH), 116.89 (CH), 128.27 (d, 4 J PC = 2.6 Hz, CH), 128.46 (CH), 130.63 (C), 131.03 (d, ³ J PC = 5.9 Hz, CH), 135.43 (C), 147.29 (d, ³ J PC = 14.3 Hz, C). 4h: white solid; mp 60 ˚C. ¹H NMR (500 MHz, CDCl3): δ = 1.13 (t, ³ J = 7.0 Hz, 3 H), 1.28 (t, ³ J = 7.0 Hz, 3 H), 2.30 (s, 3 H), 3.68-3.70 (m, 1 H), 3.92-3.94 (m, 1 H), 4.08-4.13 (m, 2 H), 4.73 (d, ² J HP = 24.1 Hz, 1 H), 4.96 (br, 1 H), 6.69 (d, ³ J = 7.5 Hz, 2 H), 6.65-6.69 (m, 1 H), 7.07-7.13 (m, 4 H), 7.31-7.34 (m, 2 H). ¹³C NMR (125 MHz, CDCl3): δ = 16.45 (d, ³ J PC = 5.5 Hz, Me), 16.63 (d, ³ J PC = 5.6 Hz, Me), 20.79 (Me), 58.65 (d, ¹ J PC = 151.7 Hz, CH), 63.43 (d, ² J PC = 7.0 Hz, OCH2), 63.97 (d, ² J PC = 6.9 Hz, OCH2), 115.08 (CH), 118.19 (CH), 128.04 (d, 4 J PC = 2.9 Hz, CH), 128.93 (d, ³ J PC = 5.7 Hz, CH), 128.84 (CH), 132.52 (C), 137.36 (C), 146.73 (d, ³ J PC = 14.1 Hz, C). 4q: white solid; mp 117-119 ˚C. ¹H NMR (500 MHz, CDCl3): δ = 1.11 (t, J = 7.0 Hz, 3 H), 1.25 (t, J = 7.0 Hz, 3 H), 3.41 (s, 3 H), 3.43 (s, 3 H), 3.59-3.64 (m, 1 H), 3.81-3.85 (m, 1 H), 4.00-4.08 (m, 2 H), 4.61 (d, ² J HP = 24.4 Hz, 1 H), 4.78 (br, 1 H), 6.50 (d, ³ J = 7.6 Hz, 2 H), 6.63 (d, ³ J = 7.2 Hz, 2 H), 6.91 (d, ³ J = 8.4 Hz, 2 H), 7.23 (d, ³ J = 8.5 Hz, 2 H). 4r: white solid; mp 106-108 ˚C. ¹H NMR (500 MHz, CDCl3): δ = 1.12 (t,
J = 7.1 Hz, 3 H), 1.21 (t, J = 7.1 Hz, 3 H), 3.53 (s, 3 H), 3.52-3.54 (m, 1 H), 3.58-3.69 (m, 1 H), 3.88-3.93 (m, 2 H), 4.45 (d, ² J HP = 23.9 Hz, 1 H), 4.65 (br, 1 H), 6.26 (d, ³ J = 8.4 Hz, 2 H), 6.64 (d, ³ J = 8.3 Hz, 2 H), 6.91 (d, ³ J = 8.6 Hz, 2 H), 7.11 (d, ³ J = 8.6 Hz, 2 H).