Horm Metab Res 2008; 40(12): 848-853
DOI: 10.1055/s-0028-1086025
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Long-term Dietary Lipid Regimen Alters Adrenocortical Function at the Cellular Level

R. V. Carsia 1 , H. Weber 1 , 2 , P. J. McIlroy 3 , C. E. Hock 1
  • 1Department of Cell Biology, UMDNJ-School of Osteopathic Medicine, Stratford, NJ, USA
  • 2Present address: FOSS Project, Lawrence Hall of Science, University of California, Berkeley, CA, USA
  • 3Department of Biology, Camden College of Arts and Sciences, Rutgers University, Camden, NJ, USA
Further Information

Publication History

received 07.01.2008

accepted 05.06.2008

Publication Date:
22 September 2008 (online)

Abstract

Evidence indicates that dietary lipids influence adrenocortical function. In the present study, weanling rats were fed isocaloric synthetic diets for 6 and 12 months that contained 10% of one of the selected fatty acids as the predominant lipid: butter fat (high saturated, low polyunsaturated fat); olive oil (monounsaturated); corn oil (polyunsaturated); ω-3 ethyl ester mixture (long-chain polyunsaturates); elevated eicosapentaenoic acid; elevated docosahexaenoic acid. Adrenocortical cells derived from individual rats were evaluated for corticosterone and aldosterone responses to adrenocorticotropic hormone (ACTH). All comparisons were to the butter fat diet. Adrenocortical cell sensitivity to ACTH was not affected by the diets. However, there were differences in basal and maximal ACTH-induced corticosteroid production. Compared to the butter fat diet, the other diets variably decreased cellular corticosteroid production. Corticosterone and aldosterone production were affected similarly. The greatest decrease was most often seen with the ω-3 mixture diet (about −67%). At 6 months, the docosahexaenoic acid-elevated diet had selective suppressive actions on adrenocortical function whereas at 12 months, both docosahexaenoic and eicosahexaenoic acid-elevated diets had similar suppressive efficacies. The data indicate that a diet rich in high saturated, low polyunsaturated fat augments adrenocortical function and increasing the representation of long-chain unsaturated fatty acids suppresses adrenocortical function.

References

  • 1 Widmaier EP, Rosen K, Abbott B. Free fatty acids activate the hypothalamic-pituitary-adrenocortical axis in rats.  Endocrinology. 1992;  131 2313-2318
  • 2 Widmaier EP, Margenthaler J, Sarel I. Regulation of pituitary-adrenocortical activity by free fatty acids in vivo and in vitro.  Prostaglandins Leukot Essent Fatty Acids. 1995;  52 179-183
  • 3 Alam SQ, Alam BS, Ren Y-F. Adenylate cylcase activity, membrane fluidity and fatty acid composition of rat heart in essential fatty acid deficiency.  J Mol Cell Cardiol. 1987;  19 465-475
  • 4 Alam SQ, Ren Y-F, Alam BS. [3H]forskolin- and [3H]dihydroalprenolol-binding sites and adenylate cyclase activity in the heart of rats fed diets containing different oils.  Lipids. 1988;  23 207-213
  • 5 Patten GS, Rinaldi JA, MacMurchie EJ. Effects of dietary eicosapentaenoate (20:5, n−3) on cardiac beta-adrenergic receptor activity in the marmoset monkey.  Biochem Biophys Res Commun. 1989;  162 686-693
  • 6 Vahouny GV, Hodges VA, Treadwell CR. Essential fatty acid deficiency and adrenal cortical function in vitro.  J Lipid Res. 1979;  20 154-161
  • 7 Engler MM, Schambelan M, Engler MB, Ball DL, Goodfriend TL. Effects of dietary γ-linoleic acid on blood pressure and adrenal angiotensin receptors in hypertensive rats.  Proc Soc Exp Biol Med. 1998;  218 234-237
  • 8 Engler MM, Engler MB, Goodfriend TL, Ball DL, Yu Z, Su P, Kroetz DL. Docosahexaenoic acid is an antihypertensive nutrient that affects aldosterone production in SHR.  Proc Soc Exp Biol Med. 1999;  221 32-38
  • 9 Bruder ED, Henderson LM, Raff H. Adrenal lipid profiles of chemically sympathecotomized normoxic and hypoxic neonatal rats.  Horm Metab Res. 2006;  38 807-811
  • 10 Goodfriend TL, Ball DL, Elliott ME, Morrison AR, Evenson MA. Fatty acids are potential endogenous regulators of aldosterone secretion.  Endocrinology. 1991;  128 2511-2519
  • 11 Elliott ME, Goodfriend TL. Mechanism of fatty acid inhibition of aldosterone synthesis by bovine adrenal glomerulosa cells.  Endocrinology. 1993;  132 2453-2460
  • 12 Goodfriend TL, Lee W-MP, Ball DL, Elliott ME. Specificity and mechanism of fatty acid inhibition of aldosterone secretion.  Prostaglandins Leukot Essent Fatty Acids. 1995;  52 145-150
  • 13 Whitcomb RW, Linehan WM, Knazek RA. Effects of long-chain, saturated fatty acids on membrane microviscosity and adrenocorticotropin responsiveness of human adrenocortical cells in vitro.  J Clin Invest. 1988;  81 185-188
  • 14 Goodfriend TL, Ball DL, Elliott ME, Chabhi A, Duong T, Raff H, Schneider EG, Brown RD, Weinberger MH. Fatty acids may regulate aldosterone secretion and mediate some of insulin's effects on blood pressure.  Prostaglandins Leukot Essent Fatty Acids. 1993;  48 43-50
  • 15 Sarel I, Widmaier EP. Stimulation of steroidogenesis in cultured rat adrenocortical cells by unsaturated fatty acids.  Am J Physiol. 1995;  268 R1484-R1490
  • 16 Matthys LA, Widmaier EP. Fatty acids inhibit adrenocorticotropin-induced adrenal steroidogenesis.  Horm Metab Res. 1998;  30 80-83
  • 17 Goodfriend TL, Egan BM, Kelley DE. Aldosterone in obesity.  Endocr Res. 1998;  24 789-796
  • 18 Goodfriend TL, Ball DL, Raff H, Bruder ED, Gardner HW, Spiteller G. Oxidized products of linoleic acid stimulate adrenal steroidogenesis.  Endocrine Res. 2002;  28 325-330
  • 19 Goodfriend TL, Ball DL, Gardner HW. An oxidized derivative of linoleic acid affects aldosterone secretion by adrenal cells in vitro.  Prostaglandins Leukot Essent Fatty Acids. 2002;  67 163-167
  • 20 Bruder ED, Ball DL, Goodfriend TL, Raff H. An oxidized metabolite of linoleic acid stimulates corticosterone production by rat adrenal cells.  Am J Physiol. 2003;  284 R1631-R1635
  • 21 Goodfriend TL, Ball DL, Egan BM, Campbell WB, Nithipatikom K. Epoxy-keto derivative of linoleic acid stimulates aldosterone secretion.  Hypertension. 2004;  43 358-363
  • 22 Payet MD, Goodfriend TL, Bilodeau L, Mackendale C, Chouinard L, Gallo-Payet N. An oxidized metabolite of linoleic acid increases intracellular calcium in rat adrenal glomerulosa cells.  Am J Physiol. 2006;  291 E1160-E1167
  • 23 Bruder ED, Raff H, Goodfriend TL. An oxidized derivative of linoleic acid stimulates dehydroepiandrosterone production by human adrenal cells.  Horm Metab Res. 2006;  38 803-806
  • 24 Bornstein SR, Uhlmann K, Haidan A, Ehrhart-Bornstein M, Scherbaum WA. Evidence for a novel peripheral action of leptin as a metabolic signal to the adrenal gland: leptin inhibits cortisol release directly.  Diabetes. 1997;  46 1235-1238
  • 25 Glasow A, Haidan A, Hilbers U, Breidert M, Gillespie J, Scherbaum WA, Chrousos GP, Bornstein SR. Expression of Ob receptor in normal human adrenals: differential regulation of adrenocortical and adrenomedullary function by leptin.  J Clin Endocrinol Metab. 1998;  83 4459-4466
  • 26 Kruse M, Bornstein SR, Uhlmann K, Paeth G, Scherbaum WA. Leptin down-regulates the steroid producing system in the adrenal.  Endocr Res. 1998;  24 587-590
  • 27 De Lean A, Munson PJ, Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay and physiological dose-response curves.  Am J Physiol. 1978;  235 E97-E102
  • 28 Bevington PR. Data Reduction and Error Analysis for the Physical Sciences. New York: McGraw-Hill 1969
  • 29 Zar JH. Biostatistical Analysis, 3rd ed. Upper Saddle River, NJ: Prentice Hall 1996
  • 30 Sayers G. Bioassay of ACTH using isolated cortex cells.  Ann NY Acad Sci. 1977;  297 220-241

Correspondence

R.V. CarsiaPhD 

Department of Cell Biology

UMDNJ-School of Osteopathic Medicine

2 Medical Center Drive

Stratford

08084-1489 NJ

USA

Phone: +1/856/566 60 39

Fax: +1/856/566 28 81

Email: carsiaro@umdnj.edu