Abstract
The present review focuses on the possible role of interleukin-(IL)-6 in vascular insulin resistance. The endothelium plays an important role in regulating the tone of the vasculature by releasing nitric oxide (NO) to the smooth muscles of the vessels, thereby regulating the distribution of blood flow to the various tissues in relation to their energy demand. A dysfunctioning endothelium has been associated with both initiation and progression of atherosclerotic cardiovascular (CV) disease and has been shown to predate the onset of hyperglycemia in the natural history of type 2 diabetes. It is likely that chronic low-level inflammation plays an important role in developing endothelial dysfunction mainly through proinflammatory actions of tumor necrosis factor alpha (TNF-α). TNF-α induces production of IL-6 and it has been suggested that a causal relationship exists between endothelial dysfunction and these cytokines. With regard to vascular insulin resistance, the available data point to a direct pathogenic role of TNF-α in mediating endothelial dysfunction, whereas with regard to IL-6 evidence is sparse and does not allow any firm conclusions.
Key words
cytokines - interleukins - insulin resistance - vascular - metabolism
References
1
Landmesser U, Hornig B, Drexler H.
Endothelial function: a critical determinant in atherosclerosis?.
Circulation.
2004;
109
II-27
2
Trepels T, Zeiher AM, Fichtlscherer S.
The endothelium and inflammation.
Endothelium.
2006;
13
423-429
3
Brunner H, Cockcroft JR, Deanfield J, Donald A, Ferrannini E, Halcox J, Kiowski W, Luscher TF, Mancia G, Natali A, Oliver JJ, Pessina AC, Rizzoni D, Rossi GP, Salvetti A, Spieker LE, Taddei S, Webb DJ.
Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension.
J Hypertens.
2005;
23
233-246
4
Rask-Madsen C, King GL.
Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes.
Nat Clin Pract Endocrinol Metab.
2007;
3
46-56
5
Enderle MD, Benda N, Schmuelling RM, Haering HU, Pfohl M.
Preserved endothelial function in IDDM patients, but not in NIDDM patients, compared with healthy subjects.
Diabetes Care.
1998;
21
271-277
6
Clarkson P, Celermajer DS, Donald AE, Sampson M, Sorensen KE, Adams M, Yue DK, Betteridge DJ, Deanfield JE.
Impaired vascular reactivity in insulin-dependent diabetes mellitus is related to disease duration and low density lipoprotein cholesterol levels.
J Am Coll Cardiol.
1996;
28
573-579
7
Arcaro G, Zenere BM, Saggiani F, Zenti MG, Monauni T, Lechi A, Muggeo M, Bonadonna RC.
ACE inhibitors improve endothelial function in type 1 diabetic patients with normal arterial pressure and microalbuminuria.
Diabetes Care.
1999;
22
1536-1542
8
Celermajer DS, Sorenson KE, Bull C, Robinson J, Deanfield JE.
Endothelial-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction.
J Am Coll Cardiol.
1994;
24
1468-1474
9
Melikian N, Wheatcroft SB, Ogah OS, Murphy C, Chowienczyk PJ, Wierzbicki AS, Sanders TA, Jiang B, Duncan ER, Shah AM, Kearney MT.
Asymmetric dimethylarginine and reduced nitric oxide bioavailability in young Black African men.
Hypertension.
2007;
49
873-877
10
Steinberg HO, Chaker H, Learning R.
Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance.
J Clin Invest.
1996;
97
2601-2610
11
Williams IL, Chowienczyk PJ, Wheatcroft SB, Patel AG, Sherwood RA, Momin A, Shah AM, Kearney MT.
Endothelial function and weight loss in obese humans.
Obes Surg.
2005;
15
1055-1060
12
Hsueh WA, Quinones MJ.
Role of endothelial dysfunction in insulin resistance.
The Am J Cardiol.
2003;
92
10-17
13
Vriese AS De, Verbeuren TJ, Van d V, Lameire NH, Vanhoutte PM.
Endothelial dysfunction in diabetes.
Br J Pharmacol.
2000;
130
963-974
14
MacVeigh GE, Brennan GM, Johnston GD, MacDermott BJ, MacGrath LT, Henry WR, Andrews JW, Hayes JR.
Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus.
Diabetologia.
1992;
35
771-776
15
Laakso M, Edelman SV, Brechtel G, Baron AD.
Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance.
J Clin Invest.
1990;
85
1844-1852
16
Laakso M, Edelman SV, Brechtel G, Baron AD.
Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM.
Diabetes.
1992;
41
1076-1083
17
Castell JV, Gomez-Lechon MJ, David M, Hirano T, Kishimoto T, Heinrich PC.
Recombinant human interleukin-6 (IL-6/BSF-2/HSF) regulates the synthesis of acute phase proteins in human hepatocytes.
FEBS Lett.
1988;
232
347-350
18
Morrone G, Ciliberto G, Oliviero S, Arcone R, Dente L, Content J, Cortese R.
Recombinant interleukin 6 regulates the transcriptional activation of a set of human acute phase genes.
J Biol Chem.
1988;
263
12554-12558
19
Schindler R, Mancilla J, Endres S, Ghorbani R, Clark SC, Dinarello CA.
Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF.
Blood.
1990;
75
40-47
20
Steensberg A, Fischer CP, Keller C, Moller K, Pedersen BK.
IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans.
Am J Physiol Endocrinol Metab.
2003;
285
E433-E437
21
Tilg H, Dinarello CA, Mier JW.
IL-6 and APPs: anti-inflammatory and immunosuppressive mediators.
Immunol Today.
1997;
18
428-432
22
Libby P.
Inflammation in atherosclerosis.
Nature.
2002;
420
868-874
23
Libby P, Ridker PM, Maseri A.
Inflammation and atherosclerosis.
Circulation.
2002;
105
1135-1143
24
Dandona P, Aljada A, Bandyopadhyay A.
Inflammation: the link between insulin resistance, obesity and diabetes.
Trends Immunol.
2004;
25
4-7
25
Bruunsgaard H, Pedersen BK.
Age-related inflammatory cytokines and disease.
Immunol Allergy Clin North Am.
2003;
23
15-39
26
Petersen AM, Pedersen BK.
The anti-inflammatory effect of exercise.
J Appl Physiol.
2005;
98
1154-1162
27
Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, Hoogeveen R, Folsom AR, Heiss G.
Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study.
Diabetes.
2003;
52
1799-1805
28
Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM.
C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus.
JAMA.
2001;
286
327-334
29
Barzilay JI, Abraham L, Heckbert SR, Cushman M, Kuller LH, Resnick HE, Tracy RP.
The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study.
Diabetes.
2001;
50
2384-2389
30
Han TS, Sattar N, Williams K, Gonzalez-Villalpando C, Lean ME, Haffner SM.
Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study.
Diabetes Care.
2002;
25
2016-2021
31
Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, Tataranni PA, Knowler WC, Krakoff J.
Adiponectin and development of type 2 diabetes in the Pima Indian population.
Lancet.
2002;
360
57-58
32
Vozarova B, Weyer C, Lindsay RS, Pratley RE, Bogardus C, Tataranni PA.
High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes.
Diabetes.
2002;
51
455-461
33
Freeman DJ, Norrie J, Caslake MJ, Gaw A, Ford I, Lowe GD, O’Reilly DS, Packard CJ, Sattar N.
C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study.
Diabetes.
2002;
51
1596-1600
34
Ford ES.
Leukocyte count, erythrocyte sedimentation rate, and diabetes incidence in a national sample of US adults.
Am J Epidemiol.
2002;
155
57-64
35
Nakanishi N, Yoshida H, Matsuo Y, Suzuki K, Tatara K.
White blood-cell count and the risk of impaired fasting glucose or Type II diabetes in middle-aged Japanese men.
Diabetologia.
2002;
45
42-48
36
Festa A, D’Agostino Jr R, Tracy RP, Haffner SM.
Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study.
Diabetes.
2002;
51
1131-1137
37
Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger Jr WH, Heimovitz H, Cohen HJ, Wallace R.
Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly.
Am J Med.
1999;
106
506-512
38
Volpato S, Guralnik JM, Ferrucci L, Balfour J, Chaves P, Fried LP, Harris TB.
Cardiovascular disease, interleukin-6, and risk of mortality in older women: the women's health and aging study.
Circulation.
2001;
103
947-953
39
Reuben DB, Cheh AI, Harris TB, Ferrucci L, Rowe JW, Tracy RP, Seeman TE.
Peripheral blood markers of inflammation predict mortality and functional decline in high-functioning community-dwelling older persons.
J Am Geriatr Soc.
2002;
50
638-644
40
Roubenoff R, Parise H, Payette HA, Abad LW, D’Agostino R, Jacques PF, Wilson PW, Dinarello CA, Harris TB.
Cytokines, insulin-like growth factor 1, sarcopenia, and mortality in very old community-dwelling men and women: the Framingham Heart Study.
Am J Med.
2003;
115
429-435
41
Mooradian AD, Reed RL, Osterweil D, Scuderi P.
Detectable serum levels of tumor necrosis factor alpha may predict early mortality in elderly institutionalized patients.
J Am Geriatr Soc.
1991;
39
891-894
42
Rosenthal AJ, MacMurtry CT, Sanders KM, Jacobs M, Thompson D, Adler RA.
The soluble interleukin-2 receptor predicts mortality in older hospitalized men.
J Am Geriatr Soc.
1997;
45
1362-1364
43
Weijenberg MP, Feskens EJ, Kromhout D.
White blood cell count and the risk of coronary heart disease and all-cause mortality in elderly men.
Arterioscler Thromb Vasc Biol.
1996;
16
499-503
44
Cappola AR, Xue QL, Ferrucci L, Guralnik JM, Volpato S, Fried LP.
Insulin-like growth factor I and interleukin-6 contribute synergistically to disability and mortality in older women.
J Clin Endocrinol Metab.
2003;
88
2019-2025
45
Yeh SS, Hafner A, Chang CK, Levine DM, Parker TS, Schuster MW.
Risk factors relating blood markers of inflammation and nutritional status to survival in cachectic geriatric patients in a randomized clinical trial.
J Am Geriatr Soc.
2004;
52
1708-1712
46
Bruunsgaard H, Andersen-Ranberg K, Hjelmborg JB, Pedersen BK, Jeune B.
Elevated levels of tumor necrosis factor alpha and mortality in centenarians.
Am J Med.
2003;
115
278-283
47
Bruunsgaard H, Ladelund S, Pedersen AN, Schroll M, Jorgensen T, Pedersen BK.
Predicting death from tumour necrosis factor-alpha and interleukin-6 in 80-year-old people.
Clin Exp Immunol.
2003;
132
24-31
48
Lee IM, Paffenbarger Jr RS, Hennekens CH.
Physical activity, physical fitness and longevity.
Aging (Milano).
1997;
9
2-11
49
Lamonte MJ, Blair SN, Church TS.
Physical activity and diabetes prevention.
J Appl Physiol.
2005;
99
1205-1213
50
Thune I, Furberg AS.
Physical activity and cancer risk: dose-response and cancer, all sites and site-specific.
Med Sci Sports Exerc.
2001;
33
S530-S550
51
Clarkson P, Montgomery HE, Mullen MJ, Donald AE, Powe AJ, Bull T, Jubb M, World M, Deanfield JE.
Exercise training enhances endothelial function in young men.
J Am Coll Cardiol.
1999;
33
1379-1385
52
DeSouza CA, Shapiro LF, Clevenger CM, Dinenno FA, Monahan KD, Tanaka H, Seals DR.
Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men.
Circulation.
2000;
102
1351-1357
53
Kingwell BA, Sherrard B, Jennings GL, Dart AM.
Four weeks of cycle training increases basal production of nitric oxide from the forearm.
Am J Physiol.
1997;
272
H1070-H1077
54
Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R, Yu J, Adams V, Niebauer J, Schuler G.
Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure.
Circulation.
1998;
98
2709-2715
55
Hambrecht R, Hilbrich L, Erbs S, Gielen S, Fiehn E, Schoene N, Schuler G.
Correction of endothelial dysfunction in chronic heart failure: additional effects of exercise training and oral L-arginine supplementation.
J Am Coll Cardiol.
2000;
35
706-713
56
Maiorana A, O’Driscoll G, Cheetham C, Collis J, Goodman C, Rankin S, Taylor R, Green D.
Combined aerobic and resistance exercise training improves functional capacity and strength in CHF.
J Appl Physiol.
2000;
88
1565-1570
57
Sciacqua A, Candigliota M, Ceravolo R, Scozzafava A, Sinopoli F, Corsonello A, Sesti G, Perticone F.
Weight loss in combination with physical activity improves endothelial dysfunction in human obesity.
Diabetes Care.
2003;
26
1673-1678
58
Andreozzi GM, Leone A, Laudani R, Deinite G, Martini R.
Acute impairment of the endothelial function by maximal treadmill exercise in patients with intermittent claudication, and its improvement after supervised physical training.
Int Angiol.
2007;
26
12-17
59
Moyna NM, Thompson PD.
The effect of physical activity on endothelial function in man.
Acta Physiol Scand.
2004;
180
113-123
60
Kado S, Nagase T, Nagata N.
Circulating levels of interleukin-6, its soluble receptor and interleukin-6/interleukin-6 receptor complexes in patients with type 2 diabetes mellitus.
Acta Diabetol.
1999;
36
67-72
61
Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE.
Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion.
Obes Res.
2001;
9
414-417
62
Pickup JC, Chusney GD, Thomas SM, Burt D.
Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes.
Life Sci.
2000;
67
291-300
63
Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S, Coppack SW.
Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo.
J Clin Endocrinol Metab.
1997;
82
4196-4200
64
Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI.
Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes.
N Engl J Med.
2004;
350
664-671
65
Carey AL, Bruce CR, Sacchetti M, Anderson MJ, Olson D, Saltin B, Hawley JA, Febbraio MA.
Interleukin-6 and tumor necrosis factor-alpha are not increased in patients with type 2 diabetes: evidence that plasma IL-6 is related to fat mass and not insulin responsiveness.
Diabetologia.
2004;
47
1029-1037
66
Neta R, Sayers TJ, Oppenheim JJ.
Relationship of TNF to interleukins.
Immunol Ser.
1992;
56
499-566
67
Yudkin JS.
Inflammation, obesity, and the metabolic syndrome.
Horm Metab Res.
2007;
39
707-709
68
Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, Prelovsek O, Hohnen-Behrens C, Watt MJ, James DE, Kemp BE, Pedersen BK, Febbraio MA.
Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase.
Diabetes.
2006;
55
2688-2697
69
Al-Khalili L, Bouzakri K, Glund S, Lonnqvist F, Koistinen HA, Krook A.
Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle.
Mol Endocrinol.
2006;
20
3364-3375
70
Ruderman NB, Keller C, Richard AM, Saha AK, Luo Z, Xiang X, Giralt M, Ritov VB, Menshikova EV, Kelley DE, Hidalgo J, Pedersen BK, Kelly M.
Interleukin-6 regulation of AMP-activated protein kinase: Potential role in the systemic response to exercise and prevention of the metabolic syndrome.
Diabetes.
2006;
55
((Suppl 2))
S48-S54
71
Glund S, Deshmukh A, Long YC, Moller T, Koistinen HA, Caidahl K, Zierath JR, Krook A.
Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle.
Diabetes.
2007;
56
1630-1637
72
Geiger PC, Hancock C, Wright DC, Han DH, Holloszy JO.
IL-6 increases muscle insulin sensitivity only at superphysiological levels.
Am J Physiol Endocrinol Metab.
2007;
292
E1842-E1846
73
Bhagat K, Moss R, Collier J, Vallance P.
Endothelial “stunning” following a brief exposure to endotoxin: a mechanism to link infection and infarction?.
Cardiovasc Res.
1996;
32
822-829
74
Hingorani AD, Cross J, Kharbanda RK, Mullen MJ, Bhagat K, Taylor M, Donald AE, Palacios M, Griffin GE, Deanfield JE, MacAllister RJ, Vallance P.
Acute systemic inflammation impairs endothelium-dependent dilatation in humans.
Circulation.
2000;
102
994-999
75
Melikian N, Chowienczyk P, Maccarthy PA, Williams IL, Wheatcroft SB, Sherwood R, Gale C, Shah AM, Kearney MT.
Determinants of endothelial function in asymptomatic subjects with and without the metabolic syndrome.
Atherosclerosis.
2008;
197
375-382
76
Vita JA, Keaney Jr JF, Larson MG, Keyes MJ, Massaro JM, Lipinska I, Lehman BT, Fan S, Osypiuk E, Wilson PW, Vasan RS, Mitchell GF, Benjamin EJ.
Brachial artery vasodilator function and systemic inflammation in the Framingham Offspring Study.
Circulation.
2004;
110
3604-3609
77
Esteve E, Castro A, Lopez-Bermejo A, Vendrell J, Ricart W, Fernandez-Real JM.
Serum interleukin-6 correlates with endothelial dysfunction in healthy men independently of insulin sensitivity.
Diabetes Care.
2007;
30
939-945
78
Kim F, Gallis B, Corson MA.
TNF-alpha inhibits flow and insulin signaling leading to NO production in aortic endothelial cells.
Am J Physiol Cell Physiol.
2001;
280
C1057-C1065
79
Rask-Madsen C, Dominguez H, Ihlemann N, Hermann T, Kober L, Torp-Pedersen C.
Tumor necrosis factor-alpha inhibits insulin's stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans.
Circulation.
2003;
108
1815-1821
80
Federici M, Hribal ML, Menghini R, Kanno H, Marchetti V, Porzio O, Sunnarborg SW, Rizza S, Serino M, Cunsolo V, Lauro D, Mauriello A, Smookler DS, Sbraccia P, Sesti G, Lee DC, Khokha R, Accili D, Lauro R.
Timp3 deficiency in insulin receptor-haploinsufficient mice promotes diabetes and vascular inflammation via increased TNF-alpha.
J Clin Invest.
2005;
115
3494-3505
81
Booth AD, Jayne DR, Kharbanda RK, MacEniery CM, Mackenzie IS, Brown J, Wilkinson IB.
Infliximab improves endothelial dysfunction in systemic vasculitis: a model of vascular inflammation.
Circulation.
2004;
109
1718-1723
82
Branen L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S.
Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice.
Arterioscler Thromb Vasc Biol.
2004;
24
2137-2142
83
Andreozzi F, Laratta E, Procopio C, Hribal ML, Sciacqua A, Perticone M, Miele C, Perticone F, Sesti G.
Interleukin-6 impairs the insulin signaling pathway, promoting production of nitric oxide in human umbilical vein endothelial cells.
Mol Cell Biol.
2007;
27
2372-2383
84
Saura M, Zaragoza C, Bao C, Herranz B, Rodriguez-Puyol M, Lowenstein CJ.
Stat3 mediates interleukin-6 [correction of interelukin-6] inhibition of human endothelial nitric-oxide synthase expression.
J Biol Chem.
2006;
281
30057-30062
85
Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I.
Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells.
Circulation.
2002;
106
1439-1441
86
Verma S, Wang CH, Li SH, Dumont AS, Fedak PW, Badiwala MV, Dhillon B, Weisel RD, Li RK, Mickle DA, Stewart DJ.
A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis.
Circulation.
2002;
106
913-919
87
Clapp BR, Hirschfield GM, Storry C, Gallimore JR, Stidwill RP, Singer M, Deanfield JE, MacAllister RJ, Pepys MB, Vallance P, Hingorani AD.
Inflammation and endothelial function: direct vascular effects of human C-reactive protein on nitric oxide bioavailability.
Circulation.
2005;
111
1530-1536
88
Schrader LI, Kinzenbaw DA, Johnson AW, Faraci FM, Didion SP.
IL-6 deficiency protects against angiotensin II induced endothelial dysfunction and hypertrophy.
Arterioscler Thromb Vasc Biol.
2007;
27
2576-2581
Correspondence
B. K. Pedersen
Centre of Inflammation and Metabolism –Rigshospitalet 7641
Blegdamsvej 9
2100 Copenhagen Ø
Denmark
Telefon: +45/3545/77 97
Fax: +45/3545/76 44
eMail: bkp@rh.dk