Horm Metab Res 2008; 40(9): 620-625
DOI: 10.1055/s-0028-1083785
Original

© Georg Thieme Verlag KG Stuttgart · New York

Pigment Epithelium-derived Factor (PEDF) Ameliorates Advanced Glycation End Product (AGE)-induced Hepatic Insulin Resistance In Vitro by Suppressing Rac-1 Activation

T. Yoshida 1 , S. Yamagishi 1 , K. Nakamura 1 , T. Matsui 1 , T. Imaizumi 1 , M. Takeuchi 2 , H. Koga 1 , T. Ueno 1 , M. Sata 1
  • 1Department of Medicine, Kurume University School of Medicine, Kurume, Japan
  • 2Department of Pathophysiological Science, Faculty of Pharmaceutical Science, Hokuriku University, Kanazawa, Japan
Further Information

Publication History

received 08.06.2007

accepted 20.11.2007

Publication Date:
15 September 2008 (online)

Abstract

Advanced glycation end products (AGEs) could be implicated in insulin resistance. However, the molecular mechanisms underlying this are not fully understood. Since pigment epithelium-derived factor (PEDF) blocks the AGE-signaling pathways, we examined here whether and how PEDF improves insulin resistance in AGE-exposed hepatoma cells, Hep3B cells. Proteins were extracted from Hep3B cells, immunoprecipitated with or without insulin receptor substrate-1 (IRS-1) antibodies, and subjected to Western blot analysis. Glycogen synthesis was measured using [14C]-d-glucose. AGE induced Rac-1 activation and increased phosphorylation of IRS-1 at serine-307 residues, JNK, c-JUN, and IκB kinase in association with decreased IκB levels in Hep3B cells. PEDF or overexpression of dominant negative Rac-1 blocked these effects of AGE on Hep3B cells. Further, AGEs decreased tyrosine phosphorylation of IRS-1, and subsequently reduced the association of p85 subunit of phosphatidylinositol 3-kinase with IRS-1 and glycogen synthesis in insulin-exposed Hep3B cells, all of which were inhibited by PEDF. Our present study suggests that PEDF could improve the AGE-elicited insulin resistance in Hep3B cells by inhibiting JNK- and IκB kinase-dependent serine phosphorylation of IRS-1 via suppression of Rac-1 activation. PEDF may play a protective role against hepatic insulin resistance in diabetes.

References

  • 1 Yamagishi S, Imaizumi T. Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy.  Curr Pharm Des. 2005;  11 2279-2299
  • 2 Rahbar S, Figarola JL. Novel inhibitors of advanced glycation endproducts.  Arch Biochem Biophys. 2003;  419 63-79
  • 3 Soldatos G, Cooper ME. Advanced glycation end products and vascular structure and function.  Curr Hypertens Rep. 2006;  8 472-478
  • 4 Wendt T, Bucciarelli L, Qu W, Lu Y, Yan SF, Stern DM, Schmidt AM. Receptor for advanced glycation endproducts (RAGE) and vascular inflammation: insights into the pathogenesis of macrovascular complications in diabetes.  Curr Atheroscler Rep. 2002;  4 228-237
  • 5 Vlassara H, Bucala R. Recent progress in advanced glycation and diabetic vascular disease: role of advanced glycation end product receptors.  Diabetes. 1996;  45 S65-S66
  • 6 Unoki H, Bujo H, Yamagishi S, Takeuchi M, Imaizumi T, Saito Y. Advanced glycation end products attenuate cellular insulin sensitivity by increasing the generation of intracellular reactive oxygen species in adipocytes.  Diabetes Res Clin Pract. 2007;  76 236-244
  • 7 Miele C, Riboulet A, Maitan MA, Oriente F, Romano C, Formisano P, Giudicelli J, Beguinot F, Obberghen E van. Human glycated albumin affects glucose metabolism in L6 skeletal muscle cells by impairing insulin-induced insulin receptor substrate (IRS) signaling through a protein kinase C alpha-mediated mechanisms.  J Biol Chem. 2003;  278 47376-37387
  • 8 Hofmann SM, Dong HJ, Li Z, Cai W, Altomonte J, Thung SN, Zeng F, Fisher EA, Vlassara H. Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse.  Diabetes. 2002;  51 2082-2089
  • 9 Soldatos G, Cooper ME, Jandeleit-Dahm KA. Advanced-glycation end products in insulin-resistant states.  Curr Hypertens Rep. 2005;  7 96-101
  • 10 Yamagishi S, Nakamura K, Matsui T, Inagaki Y, Takenaka K, Jinnouchi Y, Yoshida Y, Matsuura T, Narama I, Motomiya Y, Takeuchi M, Inoue H, Yoshimura A, Bucala R, Imaizumi T. Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression.  J Biol Chem. 2006;  281 20213-20220
  • 11 Yamagishi S, Matsui T, Nakamura K, Takeuchi M. Minodronate, a nitrogen-containing bisphosphonate, inhibits advanced glycation end product-induced vascular cell adhesion molecule-1 expression in endothelial cells by suppressing reactive oxygen species generation.  Int J Tissue React. 2005;  27 189-195
  • 12 Tombran-Tink J, Chader CG, Johnson LV. PEDF: Pigment epithelium-derived factor with potent neuronal differentiative activity.  Exp Eye Res. 1991;  53 411-414
  • 13 Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP. Pigment epithelium-derived factor: A potent inhibitor of angiogenesis.  Science. 1991;  285 245-248
  • 14 Duh EJ, Yang HS, Suzuma I, Miyagi M, Youngman E, Mori K, Katai M, Yan L, Suzuma K, West K, Davarya S, Tong P, Gehlbach P, Pearlman J, Crabb JW, Aiello LP, Campochiaro PA, Zack DJ. Pigment epithelium-derived factor suppresses ischemia-induced retinal neovascularization and VEGF-induced migration and growth.  Invest Ophthalmol Vis Sci. 2002;  43 821-829
  • 15 Yamagishi S, Amano S, Inagaki Y, Okamoto T, Takeuchi M, Inoue H. Pigment epithelium-derived factor inhibits leptin-induced angiogenesis by suppressing vascular endothelial growth factor gene expression through its anti-oxidative properties.  Microvac Res. 2003;  65 186-190
  • 16 Yoshida T, Yamagishi S, Nakamura K, Matsui T, Imaizumi T, Takeuchi M, Ueno T, Sata M. Pigment epithelium-derived factor (PEDF) inhibits advanced glycation end product (AGE)-induced C-reactive protein expression in hepatoma cells by suppressing Rac-1 activation.  FEBS Lett. 2006;  580 2788-2796
  • 17 Yamagishi S, Adachi H, Abe A, Yashiro T, Enomoto M, Furuki K, Hino A, Jinnouchi Y, Takenaka K, Matsui T, Nakamura K, Imaizumi T. Elevated serum levels of pigment epithelium-derived factor in the metabolic syndrome.  J Clin Endocrinol Metab. 2006;  91 2447-2450
  • 18 Yamagishi SI, Edelstein D, Du XL, Brownlee M. Hyperglycemia potentiates collagen-induced platelet activation through mitochondrial superoxide overproduction.  Diabetes. 2001;  50 1491-1494
  • 19 Yamagishi S, Abe R, Inagaki Y, Nakamura K, Sugawara H, Inokuma D, Nakamura H, Shimizu T, Takeuchi M, Yoshimura A, Bucala R, Shimizu H, Imaizumi T. Minodronate, a newly developed nitrogen-containing bisphosphonate, suppresses melanoma growth and improves survival in nude mice by blocking vascular endothelial growth factor signaling.  Am J Pathol. 2004;  165 1865-1874
  • 20 Senn JJ, Klover PJ, Nowak IA, Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes.  Diabetes. 2002;  51 3391-3399
  • 21 Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307).  J Biol Chem. 2000;  275 9047-9054
  • 22 Nakamori Y, Emoto M, Fukuda N, Taguchi A, Okuya S, Tajiri M, Miyagishi M, Taira K, Wada Y, Tanizawa Y. Myosin motor Myo1c and its receptor NEMO/IKK-gamma promote TNF-alpha-induced serine307 phosphorylation of IRS-1.  J Cell Biol. 2006;  173 665-671
  • 23 Jiang G, Dallas-Yang O, Liu F, Moller DE, Zhang BB. Salicylic acid reverses phorbol 12-myristate-13-acetate (PMA)- and tumor necrosis factor alpha (TNFalpha)-induced insulin receptor substrate 1 (IRS1) serine 307 phophorylation and insulin resistance in human embryonic kidney 293 (HEK293) cells.  J Biol Chem. 2003;  278 180-186
  • 24 Crespo P, Bustelo XR, Aaronson DS, Coso OA, Lopez-Barahona M, Barbacid M, Gutkind JS. Rac-1 dependent stimulation of the JNK/SPAK signaling pathway by Vav.  Oncogene. 1996;  13 455-460
  • 25 Marinari B, Costanzo A, Viola A, Michel F, Mangino G, Acuto O, Levrero M, Piccolella E, Tuosto L. Vav cooperates CD28 to induce NF-kappaB activation via a pathway involving Rac-1 and mitogen-activated kinase kinase-1.  Eur J Immunol. 2002;  32 447-456
  • 26 Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action.  J Biol Chem. 2002;  277 1531-1537
  • 27 Werner ED, Lee J, Hansen L, Yuan M, Shoelson SE. Insulin resistance due to phosphorylation of insulin receptor substrate-1 at serine 302.  J Biol Chem. 2004;  279 35298-35305
  • 28 Nakatani Y, Kaneto H, Kawamori D, Hatazaki M, Miyatsuka T, Matsuoka TA, Kajimoto Y, Matsuhisa M, Yamasaki Y, Hori M. Modulation of the JNK pathway in liver affects insulin resistance status.  J Biol Chem. 2004;  279 45803-45809
  • 29 Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M. IKK-beta links inflammation to obesity-induced insulin resistance.  Nat Med. 2005;  11 191-198

Correspondence

S. YamagishiMD, PhD 

Department of Medicine

Kurume University School of Medicine

67 Asahi-machi

Kurume 830-0011

Japan

Phone: +81/942/31 78 73

Fax: +81/942/31 78 73

Email: shoichi@med.kurume-u.ac.jp

    >