RSS-Feed abonnieren
DOI: 10.1055/s-0028-1082392
Tranilast: A Pharmaceutical Candidate for Reduction of Adhesions Using a Novel Approach
Publikationsverlauf
Publikationsdatum:
28. August 2008 (online)

ABSTRACT
Postsurgical adhesion formation has numerous deleterious side effects in a wide variety of surgical settings. Physical barriers used together with laparoscopy were developed in hopes of reducing the tissue trauma seen with open procedures and separating tissues during the critical time of healing to reduce adhesion formation. Despite meticulous techniques by surgeons and the availability of barriers, adhesion formation remains a serious problem, with more than $1 billion spent annually on complications arising from adhesions. Our laboratories have combined a previously marketed drug, Tranilast, with a gel to provide a locally delivered medicated device that can reduce adhesion formation. This article will review the role of Tranilast in the key pathways involved in adhesion formation.
KEYWORDS
Transilast - adhesions - mast cells - gynecologic surgery - surgery
REFERENCES
- 1 Ray T, Larson Jr J W, Stillman R J, Jacobs R J. Economic impact of hospitalizations for lower abdominal adhesiolysis in the United States in 1988. Surg Gynecol Obstet. 1993; 176 271-276
- 2 Diamond M P, DeCherney A H. Pathogenesis of adhesion formation/reformation: application to reproductive pelvic surgery. Microsurgery. 1987; 8 103-107
- 3 Diamond M P, Daniell J F, Feste J et al.. Adhesion reformation and de novo adhesion formation following reproductive pelvic surgery. Fertil Steril. 1987; 47 864-866
- 4 Operative Laparoscopy Study Group . Postoperative adhesion development following operative laparoscopy: evaluation at early second-look procedures. Fertil Steril. 1991; 55 700
-
5 Diamond M P.
Surgical aspects of infertility . In: Speroff L, Simpson JL, Sciarra JJ Obstetrics and Gynecology. Vol 5. Philadelphia, PA; JB Lippincott 1991: 1-23 - 6 Ray N F, Denton W G, Thamer M, Henderson S C, Perry S. Abdominal adhesiolysis: inpatient care and expenditures in the United States in 1994. J Am Coll Surg. 1998; 186 1-9
- 7 Ellis H, Moran B J, Thompson J N et al.. Adhesion-related hospital readmissions after abdominal and pelvic surgery: a retrospective cohort study. Lancet. 1999; 353 1476-1480
- 8 Kamffer W J, Jooste E V, Nel J T, de Wet J I. Surgical glove powder and intraperitoneal adhesion formation. An appeal for the use of powder-free surgical gloves. S Afr Med J. 1992; 81 158-159
- 9 Weibel M A, Majno G. Peritoneal adhesions and their relation to abdominal surgery. A postmortem study. Am J Surg. 1973; 126 345-353
- 10 Myllarniemi H, Frilander M, Turunen M, Saxen L. The effect of glove powders and their constituents on adhesion and granuloma formation in the abdominal cavity of rabbit. Acta Chir Scand. 1966; 131 312-318
- 11 Interceed (TC7) Adhesion Barrier Study Group . Prevention of postsurgical adhesions by Interceed (TC7), an absorbable adhesion barrier: a prospective, randomized multicenter clinical study. Fertil Steril. 1989; 51 933-938
- 12 Surrey M W, Friedman S. Second-look laparoscopy after reconstructive pelvic surgery for infertility. J Reprod Med. 1982; 27 658-660
- 13 diZerega G S. Contemporary adhesion prevention. Fertil Steril. 1994; 61 219-235
- 14 Galli S J, Gordon J R, Wershil B K. Mast cell cytokines in allergy and inflammation. Agents Actions Suppl. 1993; 43 209-220
- 15 Collins S M. The immunomodulation of gut motility: factors that determine the proliferation of mast cells in the sensitized gut. Gastroenterology. 1988; 94 74
- 16 Liebman S M, Langer J C, Marshall J S, Collins S M. Role of mast cells in peritoneal adhesion formation. Am J Surg. 1993; 165 127-130
- 17 Langer J C, Liebman S M, Monk P K, Pelletier G J. Mast cell mediators and peritoneal adhesion formation in the rat. J Surg Res. 1995; 59 344-348
- 18 Xu X, Pappo O, Garbuzenko E, Bischoff S C, Rivkind A, Levi-Schaffer F. Mast cell dynamics and involvement in the development of peritoneal adhesion in the rat. Life Sci. 2002; 70 951-967
- 19 Levi-Schaffer F, Weg V B. Mast cells, eosinophils and fibrosis. Clin Exp Allergy. 1997; 11 64-70
- 20 Levi-Schaffer F, Kupietzky A. Mast cells enhance migration and proliferation of fibroblasts into an in vitro wound. Exp Cell Res. 1990; 188 42-49
- 21 Kupietzky A, Levi-Schaffer F. The role of mast cells-derived histamine in the closure of an in vitro wound. Inflamm Res. 1996; 45 176-180
- 22 Hatamochi A, Ueki H, Mauch C, Krieg T. Effect of histamine on collagen and non-collagen mRNA production in human skin fibroblasts. J Dermatol. Sci. 1991; 2 407-412
- 23 Claman H. Mast cells, T cells and abnormal fibrosis. Immunol Today. 1985; 6 192
- 24 Adachi S, Maruyama T, Kondo T, Todoroki T, Fukao K. Prevention of postoperative intraperitoneal adhesions by tranilast: N-(3′,4′-dimethoxycinnamoyl)anthranilic acid. Surg Today. 1999; 29 51-54
- 25 Holmdahl L. The role of fibrinolysis in adhesion formation. Eur J Surg Suppl. 1997; 557 24-31
- 26 Rubin J, Herrera G A, Collins D. An autopsy study of the peritoneal cavity from patients on continuous ambulatory peritoneal dialysis. Am J Kidney Dis. 1991; 18 97-102
- 27 Remick D G, Strieter M, Lynch III J P, Nguyen D, Eskandari M, Kunkel S L. In vivo dynamics of murine tumor necrosis factor-alpha gene expression. Lab Invest. 1989; 60 766-771
- 28 Scott-Coombs D M. Peritoneal cytokine response in surgery. Br J Surg. 1994; 81 756
- 29 Suzawa H, Kikuchi S, Ichikawa K, Koda A. Inhibitory action of tranilast, an anti-allergic drug, on the release of cytokines and PGE2 from human monocytes-macrophages. Jpn J Pharmacol. 1992; 60 85-90
- 30 Chikaraishi A, Hirahashi J, Takase O et al.. Tranilast inhibits interleukin-1beta-induced monocyte chemoattractant protein-1 expression in rat mesangial cells. Eur J Pharmacol. 2001; 427 151-158
- 31 Yanagi T, Watanabe M, Fukuda S, Tsuji Y. Suppressive effects of tranilast (TN) on human mononuclear cells. Jpn J Inflammation. 1987; 7 169-176
- 32 Mori H, Tanaka H, Kawada K, Nagai H, Koda A. Suppressive effects of tranilast on pulmonary fibrosis and activation of alveolar macrophages in mice treated with bleomycin: role of alveolar macrophages in the fibrosis. Jpn J Pharmacol. 1995; 67 279-289
- 33 Ward M R, Agrotis A, Kanellakis P, Hall J, Jennings G, Bobik A. Tranilast prevents activation of transforming growth factor-b system, leukocyte accumulation, and neointimal growth in porcine coronary arteries after stenting. Arterioscler Thromb Vasc Biol. 2002; 22 940-948
- 34 Raftery A T. Effect of peritoneal trauma on peritoneal fibrinolytic activity and intraperitoneal adhesion formation. An experimental study in the rat. Eur Surg Res. 1981; 13 397-401
- 35 DiZerega G S, Campeau J D. Peritoneal repair and post-surgical adhesion formation. Hum Reprod Update. 2001; 7 547-555
- 36 Koyama S, Takagi H, Otani A, Suzuma K, Nishimura K, Honda Y. Tranilast inhibits protein kinase C-dependent signaling pathway linked to angiogenic activities and gene expression of retinal microcapillary endothelial cells. Br J Pharmacol. 1999; 127 537-545
- 37 Isaji M, Miyata H, Ajisawa Y, Yoshimura N. Tranilast inhibits the proliferation, chemotaxis and tube formation of human microvascular endothelial cells in vitro and angiogenesis in vivo. Br J Pharmacol. 1997; 122 1061-1066
- 38 Squires C E, Escobar G P, Payne J F et al.. Altered fibroblast function following myocardial infarction. J Mol Cell Cardiol. 2005; 39 699-707
- 39 Yasukawa T, Kimura H, Dong J et al.. Effect of Tranilast on proliferation, collagen gel contraction, and transforming growth factor beta secretion of retinal pigment epithelial cells and fibroblasts. Ophthalmic Res. 2002; 34 206-212
- 40 Li Y, Foster W, Deasy B M et al.. Transforming growth factor-β1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol. 2004; 164 1007-1019
- 41 Li Y, Huard J. Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. Am J Pathol. 2002; 161 895-907
- 42 Huard J, Yong L, Ferddie H. Muscle injuries and repair: current trends in research. J Bone Joint Surg Am. 2002; 84 822-832
- 43 Border W A, Noble N A. Transforming growth factor-β in tissue fibrosis. N Engl J Med. 1994; 10 1286-1292
- 44 Branton M H, Kopp J B. TGF-beta and fibrosis. Microbes Infect. 1999; 1 1349-1365
- 45 Bernasconi P, Torchiana E, Confalonieri P et al.. Expression of transforming growth factor-β1 in dystrophic patient muscles correlates with fibrosis. Pathogenic role of a fibrogenic cytokine. J Clin Invest. 1995; 96 1137-1144
- 46 Lundberg I, Ulfgren A, Nyberg P, Andersson U, Klareskog L. Cytokine production in muscle tissue of patients with idiopathic inflammatory myopathies. Arthritis Rheum. 1997; 40 865-874
- 47 Yamada H, Tajima S, Nishikawa T, Murad S, Pinnell S R. Tranilast, a selective inhibitor of collagen synthesis in human skin fibroblasts. J Biochem (Tokyo). 1994; 116 892-897
- 48 Suzawa H, Kikuchi S, Arai N, Koda A. The mechanism involved in the inhibitory action of tranilast on collagen biosynthesis of keloid fibroblasts. Jpn J Pharmacol. 1992; 60 91-96
- 49 Suzawa H, Kikuchi S, Ichikawa K et al.. Effect of tranilast, an antiallergic drug, on human keloid tissues. Nippon Yakurigaku Zasshi. 1992; 99 231-239
- 50 Ichikawa K, Suzawa H, Tsuchiya O et al.. Comparison of the effects of tranilast, triamcinolone, and a heparin-like substance on keloid and hypertrophic scar. Oyo Yakur. 1992; 43 401
- 51 Cohen I K, Keiser H R, Sjoerdsma A. Collagen synthesis in human keloid and hypertrophic scar. Surg Forum. 1971; 22 488-489
- 52 Shigeki S, Murakami T, Yata N, Ikuta Y. Treatment of keloid and hypertrophic scars by iontophoretic transdermal delivery of tranilast. Scand J Plast Reconstr Surg Hand Surg. 1997; 31 151-158
- 53 Taniguchi S, Yorifuji T, Hamada T. Treatment of linear localized scleroderma with the anti-allergic drug, Tranilast. Clin Exp Dermatol. 1994; 19 391-393
- 54 Pinto Y M, Pinto-Sietsma S J, Philipp T et al.. Reduction in left ventricular messenger RNA from transforming growth factor beta (1) attenuates left ventricular fibrosis and improves survival without lowering blood pressure in the hypertensive TGR(mRen2)27 rat. Hypertension. 2000; 36 747-754
- 55 Mifsud S, Kelly D J, Qi W et al.. Intervention with tranilast attenuates renal pathology and alburminuria in advanced experimental diabetic neuropathy. Nephron Physiol. 2003; 95 83-91
- 56 Martin J, Kelly D J, Mifsud S A et al.. Tranilast attenuates cardiac matrix deposition in experimental diabetes: role of transforming growth factor-β. Cardiovasc Res. 2005; 65 691-694
- 57 Guidry C. The role of Muller cells in fibrocontractive retinal disorders. Prog Retin Eye Res. 2005; 24 75-86
- 58 Hocher B, Godes M, Olivier J et al.. Inhibition of left ventricular fibrosis by tranilast in rats with renovascular hypertension. J Hypertens. 2002; 20 745-751
- 59 Ward M R, Agrotis A, Kanellakis P, Hall J, Jennings G, Bobik A. Tranilast prevents activation of transforming growth factor β system, leukocyte accumulation, and neointimal growth in porcine coronary arteries after stenting. Arterioscler Thromb Vasc Biol. 2002; 22 940-948
- 60 Tamai H, Katoh O, Suzuki S et al.. Impact of tranilast on restenosis after coronary angioplasty: Tranilast Restenosis Following Angioplasty Trial (TREAT). Am Heart J. 1999; 138 968-975
- 61 Holmes Jr D R, Savage M, LaBlanche J M et al.. Results of Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial. Circulation. 2002; 106 1243-1250
- 62 Kosuga K, Tamai H, Ueda K et al.. Effectiveness of tranilast on restenosis after directional coronary atherectomy. Am Heart J. 1997; 134 712-718
- 63 Okada H, Kalluri R. Cellular and molecular pathyways that lead to progression and regression of renal fibrogenesis. Curr Mol Med. 2005; 5 467-474
- 64 Kelly D J, Zhang Y, Gow R, Gilbert R E. Tranilast attenuates structural and functional aspects of renal injury in the remnant kidney model. J Am Soc Nephrol. 2004; 15 2619-2629
- 65 Soma J, Sugawara T, Huang Y D, Nakajima J, Kawamura M. Tranilast slows the progression of advanced diabetic nephropathy. Nephron. 2002; 92 693-698
- 66 Cooper K, Young J, Wadsworth S, Cui H, diZerega G S, Rodger K E. Reduction of post-surgical adhesion formation with Tranilast. J Surg Res. 2007; 141(2) 153-161
- 67 Young J, Wadsworth S, Cooper K, Rosenblatt J, Cui H. Drug-enhanced adhesion prevention. United States Patent Application Publication. US 2005/0106229 A1 2005
- 68 Dullerud R, Graver V, Haakonsen M, Haaland A K, Loeb M, Magnaes B. Influence of fibrinolytic factors on scar formation after lumbar discectomy. A magnetic resonance imaging follow-up study with clinical correlation performed 7 years after surgery. Spine. 1998; 23 1464-1469
- 69 Rodgers K E, Robertson J T, Espinoza T et al.. Reduction of epidural fibrosis in lumbar surgery with Oxiplex adhesion barriers of carboxymethylcellulose and polyethylene oxide. Spine J. 2003; 3 277-283
- 70 Jaibaji M, Brody G S, Rodgers K et al.. A new model for experimental tendon adhesions in the chicken. Ann Plast Surg. 2000; 44 205-210
Gere S diZeregaM.D.
University of Southern California, Keck School of Medicine, Department of Obstetrics and Gynecology, Livingston Reproductive Biology Laboratories
1321 N. Mission Road, Los Angeles, CA 90033
eMail: GSD1270@aol.com