Open Access
CC BY 4.0 · Sustainability & Circularity NOW 2025; 02: a27496438
DOI: 10.1055/a-2749-6438
Original Article

Leveraging H2 Reduction, Hydrometallurgy, and Chlor–Alkali Electrolysis for Recycling Waste LiCoO2 Electrode of Spent Li-ion Batteries

Authors

  • Jiayin Zhou

    1   School of Physical Science and Technology, ShanghaiTech University, Shanghai, China (Ringgold ID: RIN387433)
  • Jingdian Liu

    1   School of Physical Science and Technology, ShanghaiTech University, Shanghai, China (Ringgold ID: RIN387433)
  • Shaoyu Yang

    1   School of Physical Science and Technology, ShanghaiTech University, Shanghai, China (Ringgold ID: RIN387433)
  • Chao Xu

    1   School of Physical Science and Technology, ShanghaiTech University, Shanghai, China (Ringgold ID: RIN387433)
  • Xiaofei Guan

    1   School of Physical Science and Technology, ShanghaiTech University, Shanghai, China (Ringgold ID: RIN387433)

The authors acknowledge the financial support from ShanghaiTech University. Part of the characterization experiments were conducted at the Center for High-resolution Electron Microscopy (CħEM, Grant No. EM02161943) and the Analytical Instrumentation Center (Grant No. SPST-AIC10112914) at ShanghaiTech University.


Graphical Abstract

Abstract

The recycling of Li-ion batteries not only reduces the dependency on primary mineral resources but also mitigates environmental contamination associated with improper disposal. To advance the development of Li-ion battery recycling technologies, this study presents an integrative process for the recovery of waste LiCoO2 by harnessing the advantages of H2 reduction, hydrometallurgy, and chlor–alkali electrolysis. The waste LiCoO2 was first treated with H2 reduction roasting at 400 °C. The roasted product was then subjected to water leaching, achieving an Li leaching efficiency of ~96% within merely 5 min under 26 °C and a solid-to-liquid ratio of 1/14 g/mL, and resulting in a solid mixture of LiOH and Li2CO3 after evaporation and drying of the supernatant. Subsequently, the solid residue insoluble in the previous step of water leaching was subjected to HCl leaching and then NaOH precipitation to recover Co in the form of Co(OH)2. Both the HCl and NaOH utilized can be derived from chlor–alkali electrolysis. Finally, the Co(OH)2 and the mixture of LiOH and Li2CO3 recovered were used as raw materials to synthesize new LiCoO2. Overall, this integrative process enables a closed loop, increases the utilization efficiency of HCl to near unity, and can in principle avoid the production of liquid or solid wastes.



Publication History

Received: 27 August 2025

Accepted after revision: 10 November 2025

Accepted Manuscript online:
17 November 2025

Article published online:
09 December 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

Bibliographical Record
Jiayin Zhou, Jingdian Liu, Shaoyu Yang, Chao Xu, Xiaofei Guan. Leveraging H2 Reduction, Hydrometallurgy, and Chlor–Alkali Electrolysis for Recycling Waste LiCoO2 Electrode of Spent Li-ion Batteries. Sustainability & Circularity NOW 2025; 02: a27496438.
DOI: 10.1055/a-2749-6438
 
  • References

  • 1 Xiao J, Li J, Xu Z. Environ Sci Technol 2020; 54 (01) 9-25
  • 2 Makuza B, Tian Q, Guo X, Chattopadhyay K, Yu D. J Power Sources 2021; 491: 229622
  • 3 Yao Y, Zhu M, Zhao Z, Tong B, Fan Y, Hua Z. ACS Sustain Chem Eng 2018; 6 (11) 13611-13627
  • 4 Wang H, Whitacre JF. Energ Technol 2018; 6 (12) 2429-2437
  • 5 Li X, Liu S, Yang J, He Z, Zheng J, Li Y. Energy Storage Mater 2023; 55: 606-630
  • 6 Qu B, Liang J, Huo D, Li H. J Energy Storage 2025; 127: 117180
  • 7 Larouche F, Tedjar F, Amouzegar K. et al. Materials 2020; 13 (03) 801
  • 8 Cornelio A, Zanoletti A, Bontempi E. Chemistry 2024; 46
  • 9 Zhou M, Li B, Li J, Xu Z. ACS ES&T Eng 2021; 1 (10) 1369-1382
  • 10 Chagnes A, Pospiech B. J Chem Technol Biotechnol 2013; 88 (07) 1191-1199
  • 11 Wang RC, Lin YC, Wu SH. Hydrometallurgy 2009; 99 (03/04) 194-201
  • 12 Joulié M, Laucournet R, Billy E. J Power Sources 2014; 247: 551-555
  • 13 Lee C, Arby DS, Kim C, Lim J, Kwon K, Chung E. Hydrometallurgy 2025; 235
  • 14 Zhao J, Zhang B, Xie H. et al. Environ Res 2020; 181: 108803
  • 15 Li L, Dunn JB, Zhang XX. et al. J Power Sources 2013; 233: 180-189
  • 16 Gao W, Liu C, Cao H. et al. Waste Manag 2018; 75: 477-485
  • 17 Lupi C, Pasquali M, Dell’Era A. Waste Manag 2005; 25 (02) 215-220
  • 18 Li Z, He LH, Zhao ZW, Wang DZ, Xu WH. ACS Sustainable Chem Eng 2019; 7 (19) 16738-16746
  • 19 Pei S, Yan S, Chen X, Li J, Xu J. Waste Manag 2024; 188: 1-10
  • 20 Zhou J, Ni J, Guan X. RSC Sustainability 2023; 1 (09) 2241-2253
  • 21 Zhang B, Xie H, Lu B. et al. ACS Sustainable Chem Eng 2019; 7 (15) 13391-13399
  • 22 Liu F, Peng C, Ma Q. et al. Sep Purif Technol 2021; 259: 118181
  • 23 Chen Y, Guan X. Processes 2025; 13 (05) 1525
  • 24 Ni J, Zhou J, Bing J, Guan X. Sep Purif Technol 2022; 278: 119485
  • 25 Garcia-Herrero I, Margallo M, Onandía R, Aldaco R, Irabien A. Sustainable Prod Consumption 2017; 12: 44-58
  • 26 House KZ, House CH, Schrag DP, Aziz MJ. Environ Sci Technol 2007; 41 (24) 8464-8470
  • 27 Keijer T, Bakker V, Slootweg JC. Nat Chem 2019; 11 (03) 190-195
  • 28 Binnemans K, Jones PT. J Sustainable Metall 2023; 9 (01) 1-25
  • 29 Flerlage H, Slootweg JC. Nat Rev Chem 2023; 7 (09) 593-594
  • 30 Guan X, Enalls BC, Clarke DR, Girguis P. Cryst Growth Des 2017; 17 (12) 6332-6340
  • 31 Nuraeni BA, Avarmaa K, Prentice LH, Rankin WJ, Rhamdhani MA. In Recovery of Valuable Metals from Li-Ion Battery Waste through Carbon and Hydrogen Reduction: Thermodynamic Analysis and Experimental Verification. Cham: Springer Nature Switzerland; 2023: 437-448
  • 32 Dahlkamp JM, Quintero C, Videla A, Rojas R. Hydrometallurgy 2024; 223: 106217
  • 33 Eshkenazi V, Peled E, Burstein L, Golodnitsky D. Solid State Ionics 2004; 170 (01/02) 83-91
  • 34 Yang Q, Zhou C, Ni J, Guan X. Sustainable Energy Fuels 2020; 4 (06) 2768-2774
  • 35 Liu Y, Wang Y, Zhao S. Curr Opin Electrochem 2023; 37: 101202
  • 36 Meng X, Deng D. CrystEngComm 2017; 19 (21) 2953-2959
  • 37 Al-Ghoul M, El-Rassy H, Coradin T, Mokalled T. J Cryst Growth 2010; 312 (06) 856-862
  • 38 Liang R, Yonezawa S, Kim J-H, Inoue T. J Asian Ceramic Soc 2018; 6 (04) 332-341
  • 39 Wang JP. Arch Metall Mater 2021; 66 (03) 745-750
  • 40 Bhandari GS, Dhawan N. Process Saf Environ Prot 2023; 172: 523-534
  • 41 Lee S, Park HW, Hong JP, Nam S-C, Jeon DH, Song J-H. Solid State Ionics 2022; 386: 116042