Open Access
CC BY 4.0 · Sustainability & Circularity NOW 2025; 02: a27464089
DOI: 10.1055/a-2746-4089
Original Article

The Concentration of Trace Metals in Locally Sold Garlic (Allium sativum) and Potential Health Risk Assessment

Authors

  • Afrose Sultana Chamon

    1   Soil, Water and Environment, University of Dhaka, Dhaka, Bangladesh (Ringgold ID: RIN95324)
  • Gulshan Akhter Shimi

    1   Soil, Water and Environment, University of Dhaka, Dhaka, Bangladesh (Ringgold ID: RIN95324)
  • Sharnali Akhter

    1   Soil, Water and Environment, University of Dhaka, Dhaka, Bangladesh (Ringgold ID: RIN95324)
    2   Institute of Energy, University of Dhaka, Dhaka, Bangladesh (Ringgold ID: RIN95324)
  • Md Marshad

    1   Soil, Water and Environment, University of Dhaka, Dhaka, Bangladesh (Ringgold ID: RIN95324)
  • Md Nadiruzzaman Mondol

    1   Soil, Water and Environment, University of Dhaka, Dhaka, Bangladesh (Ringgold ID: RIN95324)


Graphical Abstract

Abstract

The present study evaluated the trace element’ concentrations in native and foreign garlic specimens obtained from Shyambazar and Karwanbazar retail markets of Dhaka, Bangladesh. The garlic samples were collected randomly, subjected to processing, and subsequently assessed to detect heavy metals via atomic absorption spectrophotometry (AAS). Lead (Pb), zinc (Zn), copper (Cu), and chromium (Cr) concentrations were measured, and they had mean concentrations in the range of 12.00–19.00, 28.62–42.22, 2.67–3.42, and 0.00–3.85 mg kg−1, respectively, in the native garlic samples and 11.00–22.00, 29.34–44.43, 2.99–4.50, and 0.00–3.85 mg kg−1 of dry weight in the analyzed foreign garlic samples, respectively. The average daily intake of Pb, Cu, Zn, and Cr in the native garlic ranged from 0.02–0.03, 0.00–0.01, 0.05–0.07, and 0.00–0.01 mg person−1 day−1 to 0.02–0.03, 0.00–0.01, 0.04–0.06, and 0.00–0.01 mg person−1 day−1 in the foreign garlic samples. The results revealed that the hazard quotient (HQ) values of Pb in all garlic samples were greater than 1 (dimensionless ratio) unlike the other concerned heavy metals. The hazard index (HI), i.e., the summation of HQ values, of both native garlic samples and Chinese garlic samples, exceeded 1, implying an increased potential for adverse health effects, especially through chronic exposure to heavy metals present in the studied garlic samples.

Primary Data



Publication History

Received: 20 July 2025

Accepted after revision: 27 October 2025

Article published online:
15 December 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

Bibliographical Record
Afrose Sultana Chamon, Gulshan Akhter Shimi, Sharnali Akhter, Md Marshad, Md Nadiruzzaman Mondol. The Concentration of Trace Metals in Locally Sold Garlic (Allium sativum) and Potential Health Risk Assessment. Sustainability & Circularity NOW 2025; 02: a27464089.
DOI: 10.1055/a-2746-4089
 
  • References

  • 1 Mudassir IZ, Asrar A, Mansoor A, Farooqui MA. J Appl Sci 2005; 5 (04) 708-711
  • 2 Zheljazkov VD, Craker LE, Xing B. Environ Exp Bot 2006; 58 (01/03) 9-16
  • 3 Zhou H, Yang W-T, Zhou X. et al. Int J Environ Res Public Health 2016; 13 (03) 289
  • 4 Tüzen M. Microchem J 2003; 74 (03) 289-297
  • 5 Goldhaber SB. Toxic Regul Toxicol Pharmacol 2003; 38 (02) 232-242
  • 6 Radwan MA, Salama AK. Food Chem Toxicol 2006; 44 (08) 1273-1278
  • 7 Tuzen M, Soylak M. Food Chem 2007; 102 (04) 1089-1095
  • 8 Duran A, Tuzen M, Soylak M. Int J Food Sci Nutr 2008; 59 (07/08) 581-589
  • 9 Ghosh AK, Bhatt MA, Agrawal HP. Environ Monit Assess 2012; 184 (02) 1025-1036
  • 10 Panghal A, Thakur A, Deore MS, Goyal M, Singh C, Kumar J. J Biochem Mol Toxicol 2024; 38 (06)
  • 11 Kerna NA, Holets HM, Anderson II J. et al. Eur J Ecol, Biol Agric 2024; 1 (03) 152-184
  • 12 Sanchez-Castillo CP, Dewey PJS, Aguirre A. et al. J Food Compos Anal 1998; 11 (04) 340-356
  • 13 Steenland K. Am J Ind Med 2000; 38 (03) 295-299
  • 14 Kumar S, Islam R, Akash PB. et al. Water Air Soil Pollut 2022; 233 (07)
  • 15 Kaiser R, Henderson AK, Daley WR. et al. Bangladesh Environ Health Perspect 2001; 109 (06) 563-566
  • 16 Shin DY, Lee SM, Jang Y. et al. Int J Mol Sci 2023; 24 (04) 3410-3410
  • 17 Kitala K, Tanski D, Godlewski J, Krajewska-Włodarczyk M, Gromadziński L, Majewski M. Nutrients 2023; 15 (13) 3040
  • 18 Hikon BN, Yebpella GG. Trends Ecol Indoor Environ Eng 2024; 2 (01) 41-49
  • 19 Ingole AA, Mukherjee AG, Balgote PJ, Pendse SP, Dhoke SB, Wanjari UR. Int J Eng Res 2021; 10 (03)
  • 20 Chamon AS. Open Access J Microbiol Biotechnol 2023; 8 (03) 1-11
  • 21 Chamon AS, Romana S, Zubaer MR, Prian WZ, Hossain M, Mondol MN. Int J Adv Multidiscipl Res Stud 2023; 3 (04) 382-389 Accessed December 24, 2024. Available from https://www.multiresearchjournal.com/arclist/list-2023.3.4/id-1436
  • 22 Chamon AS, Parash MAH, Fahad JI. et al. Syst Res 2024; 13 (01)
  • 23 World Health Organization (WHO)/Food and Agriculture Organization (FAO). Codex Alimentarius Commission: Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods. Food CF/5 INF/1. Fifth Session 2011; 3-38
  • 24 Food and Agriculture Organization (FAO)/World Health Organization (WHO). Food Additives and Contaminants: Joint Codex Alimentarius Commission, FAO/WHO Food Standards Programme. ALINORM 01/12A 2001; 1-289
  • 25 Muchuweti M, Birkett JW, Chinyanga E, Zvauya R, Scrimshaw MD, Lester JN. Agric Ecosyst Environ 2006; 112 (01) 41-48
  • 26 Kacholi DS, Sahu M. J Chem 2018; 2018 (01) 1-9
  • 27 Carabulea V, Motelica D-M, Vrînceanu NO. et al. J Appl Life Sci Environ 2023; 55 (03) (191) 245-255
  • 28 Othman O. Science 2001; (01) 27
  • 29 Singh A, Kumar Sharma R, Agrawal M, Marshall F. India Trop Ecol 2010; 51 2S 375-387
  • 30 Bondre SV, Sonkamble AM, Patil SR. Food Sci Res J 2017; 8 (02) 425-431
  • 31 National Research Council. Recommended Dietary Allowances. National Academies Press; 1989: 1-190
  • 32 Ahmed MK, Shaheen N, Islam MS. et al. Chemosphere 2015; 128: 284-292
  • 33 Zayed AM, Terry N. Plant Soil 2003; 249 (01) 139-156
  • 34 Akinyele IO, Osibanjo O. Food Chem 1982; 8 (04) 247-251
  • 35 JECFA (Joint FAO/WHO Expert Committee on Food Additives). Food Additives and Contaminants: FAO Procedural Guidelines for the Joint FAO/WHO Expert Committee on Food Additives. Rome: 2003
  • 36 Arora J, Singal A, Jacob J, Garg S, Aeri R. Environ Contamin Remediat Manage 2024; 51-71
  • 37 Nriagu J. Encycl Environ Health 2011; 801-807
  • 38 Bermudez GMA, Jasan R, Plá R, Pignata ML. J Hazard Mater 2011; 193 (01/03) 264-271
  • 39 Alain TK, Luc BT, Ali D, Moumoni D, Zongo I, Zougmoré F. J Environ Prot 2021; 12 (12) 1019-1032
  • 40 Blum WEH, Spiegel H, Wenzel WW. Bodenzustandsinventur: Konzeption, Durchführung Und Bewertung, Empfehlungen Zur Vereinheitlichung Der Vorgangsweise in Österreich. Vienna: Federal Ministry of Agriculture and Forestry; 1996: 1-19
  • 41 Samuel PN, Babatunde BB. J Environ Prot 2021; 12 (09) 624-638
  • 42 JECFA (Joint FAO/WHO Expert Committee on Food Additives). Evaluation of Certain Food Additives and Contaminants: 41st Report of JECFA. Technical Report Series No. 837 Geneva, Switzerland: World Health Organization; 1993
  • 43 World Health Organization (WHO)/Food and Agriculture Organization (FAO). World Health Org Food Agric Org 2013; 2 (01) 988
  • 44 Gomez KA, Gomez AA. Statistical Procedures for Agricultural Research. 2nd ed John Wiley & Sons; 1984