Subscribe to RSS
DOI: 10.1055/a-2741-9717
Digitale Transformation und künstliche Intelligenz in der Radiologie: Herausforderungen und Chancen für Klinik, Forschung und Nachwuchs
Article in several languages: deutsch | EnglishAuthors
Zusammenfassung
Hintergrund
Die Radiologie steht im Zentrum der digitalen Transformation des Gesundheitswesens. Als hochdigitalisierte Fachdisziplin ist sie prädestiniert für die frühe Implementierung und kritische Bewertung innovativer Technologien wie der Künstlichen Intelligenz (KI). Ziel dieser Übersichtsarbeit ist es, die Chancen und Herausforderungen der digitalen Transformation in der Radiologie umfassend und differenziert darzustellen, wobei der Fokus auf klinische Anwendungen, Forschung und Nachwuchsförderung liegt.
Methode
Diese narrative Übersichtsarbeit basiert auf einer selektiven Auswertung aktueller wissenschaftlicher Literatur sowie positionsrelevanter Fachveröffentlichungen der letzten 10 Jahre. Berücksichtigt wurden deutsch- und englischsprachige Beiträge, die für die digitale Transformation der Radiologie relevant sind, insbesondere zu den Themenbereichen digitale Infrastruktur, künstliche Intelligenz, ethische und regulatorische Rahmenbedingungen sowie Aus- und Weiterbildung.
Ergebnisse und Schlussfolgerung
Die Digitalisierung eröffnet der Radiologie erhebliche Potenziale: Neben der Weiterentwicklung bildgebender Verfahren und der automatisierten Bildanalyse mittels KI optimiert sie Arbeitsabläufe, ermöglicht personalisierte Diagnostik und fördert neue Versorgungsmodelle wie die Teleradiologie. Gleichzeitig bestehen jedoch auch zentrale Herausforderungen: Datenschutz, mangelnde Standardisierung, unzureichende Validierung und regulatorische Hürden behindern eine flächendeckende Implementierung in der Klinik. Um die Radiologie zukunftssicher aufzustellen, sind Nachwuchsförderung und die curriculare Integration digitaler Kompetenzen essenziell.
Kernaussagen
-
Aufgrund ihrer digitalen Struktur ist die Radiologie besonders gut geeignet, neue Technologien in der Medizin zu integrieren.
-
KI-basierte Anwendungen sind teilweise bereits im klinischen Alltag etabliert, benötigen jedoch eine weiterführende Validierung.
-
Eine zentrale Zukunftsaufgabe ist die systematische Ausbildung digitaler Kompetenzen bei angehenden Radiolog:innen.
Zitierweise
-
Hoffmann E, Bannas P, Bayerl N et al. Digital Transformation and Artificial Intelligence in Radiology: Challenges and Opportunities for Clinical Practice, Research, and the Next Generation. Rofo 2025; DOI 10.1055/a-2741-9717
Publication History
Received: 15 June 2025
Accepted after revision: 04 November 2025
Article published online:
17 December 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Chan S, Siegel EL. Will machine learning end the viability of radiology as a thriving medical specialty?. Br J Radiol 2019; 92: 20180416
- 2 Alvarado R. Should we replace radiologists with deep learning? Pigeons, error and trust in medical AI. Bioethics 2022; 36: 121-133
- 3 Weisberg EM, Fishman EK, Chu LC. et al. Man Versus Machine? Radiologists and Artificial Intelligence Work Better Together. Journal of the American College of Radiology 2021; 18: 887-889
- 4 Byju, Arjun. “The ‘Godfather of AI’ Predicted I Wouldn’t Have a Job. He Was Wrong”. The New Republic. Accessed October 25, 2024 at: https://newrepublic.com/article/187203/ai-radiology-geoffrey-hinton-nobel-prediction
- 5 Kelly BS. From Wile E. Coyote to Nobel laureate: reflections on Geoffrey Hinton’s impact on radiology and AI. Eur Radiol 2024;
- 6 Langlotz CP. Will Artificial Intelligence Replace Radiologists?. Radiology: Artificial Intelligence 2019; 1: e190058
- 7 Carrino JA, Unkel PJ, Miller ID. et al. Large-scale PACS implementation. J Digit Imaging 1998; 11: 3-7
- 8 Larobina M. Thirty Years of the DICOM Standard. Tomography 2023; 9: 1829-1838
- 9 Arnold P, Pinto Dos Santos D, Bamberg F. et al. FHIR – Overdue Standard for Radiology Data Warehouses. Rofo 2024;
- 10 Nabrawi E, Alanazi AT. Imaging in Healthcare: A Glance at the Present and a Glimpse Into the Future. Cureus 2023; 15: e36111
- 11 Rudisill KE, Mathur N, Kalyanpur A. A teleradiology network for the improvement of healthcare and patient management in the developing countries of the African continent. Clin Imaging 2024; 111: 110188
- 12 Kawa J, Pyciński B, Smoliński M. et al. Design and Implementation of a Cloud PACS Architecture. Sensors (Basel) 2022; 22: 8569
- 13 Putzier M, Khakzad T, Dreischarf M. et al. Implementation of cloud computing in the German healthcare system. NPJ Digit Med 2024; 7: 12
- 14 Sachdeva S, Bhatia S, Al Harrasi A. et al. Unraveling the role of cloud computing in health care system and biomedical sciences. Heliyon 2024; 10: e29044
- 15 Knight DRT, Aakre CA, Anstine CV. et al. Artificial intelligence for patient scheduling in the real-world health care setting: A metanarrative review. Health Policy and Technology 2023; 12: 100824
- 16 Carmi L, Zohar M, Riva GM. The European General Data Protection Regulation (GDPR) in mHealth: Theoretical and practical aspects for practitioners’ use. Med Sci Law 2023; 63: 61-68
- 17 Erickson BJ. Basic Artificial Intelligence Techniques: Machine Learning and Deep Learning. Radiol Clin North Am 2021; 59: 933-940
- 18 Yamashita R, Nishio M, Do RKG. et al. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018; 9: 611-629
- 19 Tian D, Jiang S, Zhang L. et al. The role of large language models in medical image processing: A narrative review. Quant Imaging Med Surg 2024; 14: 1108-1121
- 20 Nasimov R, Nasimova N, Mirzakhalilov S. et al. GAN-Based Novel Approach for Generating Synthetic Medical Tabular Data. Bioengineering (Basel) 2024; 11: 1288
- 21 Paramasamy J, Mandal S, Blomjous M. et al. Validation of a commercially available CAD-system for lung nodule detection and characterization using CT-scans. Eur Radiol 2024; 35: 1076-1088
- 22 Lind Plesner L, Müller FC, Brejnebøl MW. et al. Commercially Available Chest Radiograph AI Tools for Detecting Airspace Disease, Pneumothorax, and Pleural Effusion. Radiology 2023; 308: e231236
- 23 Lauritzen AD, Lillholm M, Lynge E. et al. Early Indicators of the Impact of Using AI in Mammography Screening for Breast Cancer. Radiology 2024; 311: e232479
- 24 Zhu B, Liu JZ, Cauley SF. et al. Image reconstruction by domain-transform manifold learning. Nature 2018; 555: 487-492
- 25 Foti G, Longo C. Deep learning and AI in reducing magnetic resonance imaging scanning time: Advantages and pitfalls in clinical practice. Pol J Radiol 2024; 89: 443-451
- 26 Linder N, Denecke T, Busse H. Body composition analysis by radiological imaging – methods, applications, and prospects. Rofo 2024;
- 27 Zhang L, Liu M, Wang L. et al. Constructing a Large Language Model to Generate Impressions from Findings in Radiology Reports. Radiology 2024; 312: e240885
- 28 Mariotti F, Agostini A, Borgheresi A. et al. Insights into radiomics: A comprehensive review for beginners. Clin Transl Oncol 2025;
- 29 Di Salle G, Tumminello L, Laino ME. et al. Accuracy of Radiomics in Predicting IDH Mutation Status in Diffuse Gliomas: A Bivariate Meta-Analysis. Radiology: Artificial Intelligence 2024; 6: e220257
- 30 Saad MB, Hong L, Aminu M. et al. Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: A retrospective study. The Lancet Digital Health 2023; 5: e404-e420
- 31 Guevorguian P, Chinnery T, Lang P. et al. External validation of a CT-based radiomics signature in oropharyngeal cancer: Assessing sources of variation. Radiother Oncol 2023; 178: 109434
- 32 Contaldo MT, Pasceri G, Vignati G. et al. AI in Radiology: Navigating Medical Responsibility. Diagnostics 2024; 14: 1506
- 33 Traverso A, Wee L, Dekker A. et al. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int J Radiat Oncol Biol Phys 2018; 102: 1143-1158
- 34 Huisman M, Akinci D’Antonoli T. What a Radiologist Needs to Know About Radiomics, Standardization, and Reproducibility. Radiology 2024; 310: e232459
- 35 Salastekar NV, Maxfield C, Hanna TN. et al. Artificial Intelligence/Machine Learning Education in Radiology: Multi-institutional Survey of Radiology Residents in the United States. Academic Radiology 2023; 30: 1481-1487
- 36 Seng M, Breit H-C, Hehenkamp P. et al. Counting coins in the dark-Austrian, German, and Swiss medical students’ perceptions of radiology. Eur Radiol 2025; 35: 5440-5449
- 37 Hoffmann E, Ristow I. Shining light on the future of radiology: Addressing medical students’ perceptions. Eur Radiol 2025; 35: 5437-5439
- 38 Mikuteit M, Just I, Steffens S. Evaluation of the National Competence Based Catalogue of Learning Objectives (NKLM 2.0) for undergraduate medical education at the Medical School Hannover. GMS J Med Educ 2023; 40: Doc68
- 39 Lindqwister AL, Hassanpour S, Levy J. et al. AI-RADS: Successes and challenges of a novel artificial intelligence curriculum for radiologists across different delivery formats. Front. Med. Technol 2023; 4: 1007708
- 40 Cucchiara F, Petrini I, Romei C. et al. Combining liquid biopsy and radiomics for personalized treatment of lung cancer patients. State of the art and new perspectives. Pharmacol Res 2021; 169: 105643
- 41 Coakley S, Young R, Moore N. et al. Radiographers’ knowledge, attitudes and expectations of artificial intelligence in medical imaging. Radiography 2022; 28: 943-948
- 42 Lång K, Josefsson V, Larsson A-M. et al. Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): A clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. Lancet Oncol 2023; 24: 936-944
- 43 Hernström V, Josefsson V, Sartor H. et al. Screening performance and characteristics of breast cancer detected in the Mammography Screening with Artificial Intelligence trial (MASAI): A randomised, controlled, parallel-group, non-inferiority, single-blinded, screening accuracy study. Lancet Digit Health 2025; 7: e175-e183
- 44 Nam JG, Hwang EJ, Kim J. et al. AI Improves Nodule Detection on Chest Radiographs in a Health Screening Population: A Randomized Controlled Trial. Radiology 2023; 307: e221894
- 45 Wang C, Shao J, He Y. et al. Data-driven risk stratification and precision management of pulmonary nodules detected on chest computed tomography. Nat Med 2024; 30: 3184-3195
