Subscribe to RSS
DOI: 10.1055/a-2731-2399
Platelets in Neonatal Sepsis: Beyond Clotting, From Silent Players to Immune Orchestrators
Authors
Abstract
Traditionally, platelet function has been defined in the context of their role in hemostasis and thrombus formation. In recent years, however, the concept of platelet function has expanded, as emerging evidence supports that platelets—despite their small size—serve as versatile and potent modulators in a wide range of biological processes, including immune responses. In the neonatal period, the immune response is immature and particularly susceptible to dysregulation. The distinct properties of neonatal platelets, compared with those of adults, may influence both the sensitivity and the magnitude of the inflammatory response. The aim of this review is to summarize current knowledge regarding the involvement of platelets in neonatal sepsis, to highlight the immunological and molecular characteristics implicated in this process, and to identify research gaps that limit the use of platelets as diagnostic and therapeutic targets in this particularly vulnerable population.
Publication History
Received: 05 August 2025
Accepted: 21 October 2025
Accepted Manuscript online:
27 October 2025
Article published online:
10 November 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Schlapbach LJ, Kissoon N. Defining pediatric sepsis. JAMA Pediatr 2018; 172 (04) 312-314
- 2 Singer M, Deutschman CS, Seymour CW. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016; 315 (08) 801-810
- 3 Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 2013; 13 (12) 862-874
- 4 Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther 2012; 10 (06) 701-706
- 5 GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392 (10159): 1736-1788
- 6 Sapiano MRP, Jones JM, Savinkina AA, Haass KA, Berger JJ, Basavaraju SV. Supplemental findings of the 2017 national blood collection and utilization survey. Transfusion 2020; 60 (Suppl. 02) S17-S37
- 7 Cognasse F, Nguyen KA, Damien P. et al. The inflammatory role of platelets via their TLRs and Siglec receptors. Front Immunol 2015; 6: 83
- 8 Nwankwor OC, McKelvie B, Frizzola M. et al. A national survey of resources to address sepsis in children in tertiary care centers in Nigeria. Front Pediatr 2019; 7: 234
- 9 Ranjeva SL, Warf BC, Schiff SJ. Economic burden of neonatal sepsis in sub-Saharan Africa. BMJ Glob Health 2018; 3 (01) e000347
- 10 Cailes B, Kortsalioudaki C, Buttery J. et al; neonIN network. Epidemiology of UK neonatal infections: the neonIN infection surveillance network. Arch Dis Child Fetal Neonatal Ed 2018; 103 (06) F547-F553
- 11 Weiss SL, Fitzgerald JC, Balamuth F. et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit Care Med 2014; 42 (11) 2409-2417
- 12 Garraud O, Hamzeh-Cognasse H, Pozzetto B, Cavaillon JM, Cognasse F. Bench-to-bedside review: platelets and active immune functions - new clues for immunopathology?. Crit Care 2013; 17 (04) 236
- 13 Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets as immune and inflammatory cells. Blood 2014; 123 (18) 2759-2767
- 14 Stocker TJ, Ishikawa-Ankerhold H, Massberg S, Schulz C. Small but mighty: platelets as central effectors of host defense. Thromb Haemost 2017; 117 (04) 651-661
- 15 Assinger A, Schrottmaier WC, Salzmann M, Rayes J. Platelets in sepsis: an update on experimental models and clinical data. Front Immunol 2019; 10: 1687
- 16 Li N, Goodall AH, Hjemdahl P. A sensitive flow cytometric assay for circulating platelet-leucocyte aggregates. Br J Haematol 1997; 99 (04) 808-816
- 17 Nagasawa A, Matsuno K, Tamura S, Hayasaka K, Shimizu C, Moriyama T. The basis examination of leukocyte-platelet aggregates with CD45 gating as a novel platelet activation marker. Int J Lab Hematol 2013; 35 (05) 534-541
- 18 Cox D. Sepsis - it is all about the platelets. Front Immunol 2023; 14: 1210219
- 19 Delvaeye M, Conway EM. Coagulation and innate immune responses: can we view them separately?. Blood 2009; 114 (12) 2367-2374
- 20 Iwanaga S. The molecular basis of innate immunity in the horseshoe crab. Curr Opin Immunol 2002; 14 (01) 87-95
- 21 Iwanaga S, Lee B-L. Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol 2005; 38 (02) 128-150
- 22 Mbiandjeu S, Balduini A, Malara A. Megakaryocyte cytoskeletal proteins in platelet biogenesis and diseases. Thromb Haemost 2022; 122 (05) 666-678
- 23 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45
- 24 Sharma S, Tyagi T, Antoniak S. Platelet in thrombo-inflammation: unraveling new therapeutic targets. Front Immunol 2022; 13: 1039843
- 25 Zaid Y, Merhi Y. Implication of platelets in immuno-thrombosis and thrombo-inflammation. Front Cardiovasc Med 2022; 9: 863846
- 26 Smyth SS, McEver RP, Weyrich AS. et al; 2009 Platelet Colloquium Participants. Platelet functions beyond hemostasis. J Thromb Haemost 2009; 7 (11) 1759-1766
- 27 Sola-Visner M. Platelets in the neonatal period: developmental differences in platelet production, function, and hemostasis and the potential impact of therapies. Hematology (Am Soc Hematol Educ Program) 2012; 2012: 506-511
- 28 Caparrós-Pérez E, Teruel-Montoya R, López-Andreo MJ. et al. Comprehensive comparison of neonate and adult human platelet transcriptomes. PLoS One 2017; 12 (08) e0183042
- 29 Stokhuijzen E, Koornneef JM, Nota B. et al. Differences between platelets derived from neonatal cord blood and adult peripheral blood assessed by mass spectrometry. J Proteome Res 2017; 16 (10) 3567-3575
- 30 Saxonhouse MA, Sola MC. Platelet function in term and preterm neonates. Clin Perinatol 2004; 31 (01) 15-28
- 31 Hézard N, Potron G, Schlegel N, Amory C, Leroux B, Nguyen P. Unexpected persistence of platelet hyporeactivity beyond the neonatal period: a flow cytometric study in neonates, infants and older children. Thromb Haemost 2003; 90 (01) 116-123
- 32 Michelson AD. Platelet function in the newborn. Semin Thromb Hemost 1998; 24 (06) 507-512
- 33 Rajasekhar D, Kestin AS, Bednarek FJ, Ellis PA, Barnard MR, Michelson AD. Neonatal platelets are less reactive than adult platelets to physiological agonists in whole blood. Thromb Haemost 1994; 72 (06) 957-963
- 34 Sitaru AG, Holzhauer S, Speer CP. et al. Neonatal platelets from cord blood and peripheral blood. Platelets 2005; 16 (3-4): 203-210
- 35 Israels SJ, Rand ML, Michelson AD. Neonatal platelet function. Semin Thromb Hemost 2003; 29 (04) 363-372
- 36 Simák J, Holada K, Janota J, Stranák Z. Surface expression of major membrane glycoproteins on resting and TRAP-activated neonatal platelets. Pediatr Res 1999; 46 (04) 445-449
- 37 Van Den Helm S, McCafferty C, Letunica N, Chau KY, Monagle P, Ignjatovic V. Platelet function in neonates and children. Thromb Res 2023; 231: 236-246
- 38 Hardy AT, Palma-Barqueros V, Watson SK. et al. Significant hypo-responsiveness to GPVI and CLEC-2 agonists in pre-term and full-term neonatal platelets and following immune thrombocytopenia. Thromb Haemost 2018; 118 (06) 1009-1020
- 39 Bednarek FJ, Bean S, Barnard MR, Frelinger AL, Michelson AD. The platelet hyporeactivity of extremely low birth weight neonates is age-dependent. Thromb Res 2009; 124 (01) 42-45
- 40 Hvas AM, Favaloro EJ. Platelet function testing in pediatric patients. Expert Rev Hematol 2017; 10 (04) 281-288
- 41 Carcillo JA, Halstead ES, Hall MW. et al; Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network Investigators. Three hypothetical inflammation pathobiology phenotypes and pediatric sepsis-induced multiple organ failure outcome. Pediatr Crit Care Med 2017; 18 (06) 513-523
- 42 Sokou R, Piovani D, Konstantinidi A. et al. A risk score for predicting the incidence of hemorrhage in critically ill neonates: development and validation study. Thromb Haemost 2021; 121 (02) 131-139
- 43 Sokou R, Parastatidou S, Konstantinidi A. et al. Neonatal hematological parameters: the translational aspect of developmental hematopoiesis. Ann Hematol 2023; 102 (04) 707-714
- 44 Sola MC, Calhoun DA, Hutson AD, Christensen RD. Plasma thrombopoietin concentrations in thrombocytopenic and non-thrombocytopenic patients in a neonatal intensive care unit. Br J Haematol 1999; 104 (01) 90-92
- 45 Colarizi P, Fiorucci P, Caradonna A, Ficuccilli F, Mancuso M, Papoff P. Circulating thrombopoietin levels in neonates with infection. Acta Paediatr 1999; 88 (03) 332-337
- 46 O'Reilly D, Murphy CA, Drew R. et al. Platelets in pediatric and neonatal sepsis: novel mediators of the inflammatory cascade. Pediatr Res 2022; 91 (02) 359-367
- 47 Shannon O. The role of platelets in sepsis. Res Pract Thromb Haemost 2020; 5 (01) 27-37
- 48 Gawaz M, Fateh-Moghadam S, Pilz G, Gurland HJ, Werdan K. Platelet activation and interaction with leucocytes in patients with sepsis or multiple organ failure. Eur J Clin Invest 1995; 25 (11) 843-851
- 49 Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O. Platelets and infections - complex interactions with bacteria. Front Immunol 2015; 6: 82
- 50 Gawaz M, Dickfeld T, Bogner C, Fateh-Moghadam S, Neumann FJ. Platelet function in septic multiple organ dysfunction syndrome. Intensive Care Med 1997; 23 (04) 379-385
- 51 Yaguchi A, Lobo FL, Vincent JL, Pradier O. Platelet function in sepsis. J Thromb Haemost 2004; 2 (12) 2096-2102
- 52 Adamzik M, Görlinger K, Peters J, Hartmann M. Whole blood impedance aggregometry as a biomarker for the diagnosis and prognosis of severe sepsis. Crit Care 2012; 16 (05) R204
- 53 Tunjungputri RN, van de Heijden W, Urbanus RT, de Groot PG, van der Ven A, de Mast Q. Higher platelet reactivity and platelet-monocyte complex formation in gram-positive sepsis compared to gram-negative sepsis. Platelets 2017; 28 (06) 595-601
- 54 Rondina MT, Schwertz H, Harris ES. et al. The septic milieu triggers expression of spliced tissue factor mRNA in human platelets. J Thromb Haemost 2011; 9 (04) 748-758
- 55 Middleton EA, Rowley JW, Campbell RA. et al. Sepsis alters the transcriptional and translational landscape of human and murine platelets. Blood 2019; 134 (12) 911-923
- 56 Tsantes AG, Parastatidou S, Tsantes EA. et al. Sepsis-induced coagulopathy: an update on pathophysiology, biomarkers, and current guidelines. Life (Basel) 2023; 13 (02) 350
- 57 Levi M, Toh CH, Thachil J, Watson HG. British Committee for Standards in Haematology. Guidelines for the diagnosis and management of disseminated intravascular coagulation. Br J Haematol 2009; 145 (01) 24-33
- 58 Opal SM, van der Poll T. Endothelial barrier dysfunction in septic shock. J Intern Med 2015; 277 (03) 277-293
- 59 Iba T, Levy JH. Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost 2018; 16 (02) 231-241
- 60 Henn V, Slupsky JR, Gräfe M. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391 (6667) 591-594
- 61 Cholette JM, Blumberg N, Phipps RP, McDermott MP, Gettings KF, Lerner NB. Developmental changes in soluble CD40 ligand. J Pediatr 2008; 152 (01) 50-54 , 54.e1
- 62 Sitaru AG, Speer CP, Holzhauer S, Obergfell A, Walter U, Grossmann R. Chorioamnionitis is associated with increased CD40L expression on cord blood platelets. Thromb Haemost 2005; 94 (06) 1219-1223
- 63 Shibazaki M, Kawabata Y, Yokochi T, Nishida A, Takada H, Endo Y. Complement-dependent accumulation and degradation of platelets in the lung and liver induced by injection of lipopolysaccharides. Infect Immun 1999; 67 (10) 5186-5191
- 64 Secor D, Li F, Ellis CG. et al. Impaired microvascular perfusion in sepsis requires activated coagulation and P-selectin-mediated platelet adhesion in capillaries. Intensive Care Med 2010; 36 (11) 1928-1934
- 65 Croner RS, Hoerer E, Kulu Y. et al. Hepatic platelet and leukocyte adherence during endotoxemia. Crit Care 2006; 10 (01) R15
- 66 Hurley SM, Lutay N, Holmqvist B, Shannon O. The dynamics of platelet activation during the progression of streptococcal sepsis. PLoS One 2016; 11 (09) e0163531
- 67 Dretschmer RR, Stewardson RB, Papierniak CK, Gotoff SP. Chemotactic and bactericidal capacities of human newborn monocytes. J Immunol 1976; 117 (04) 1303-1307
- 68 Mills EL. Mononuclear phagocytes in the newborn: their relation to the state of relative immunodeficiency. Am J Pediatr Hematol Oncol 1983; 5 (02) 189-198
- 69 Speer CP, Wieland M, Ulbrich R, Gahr M. Phagocytic activities in neonatal monocytes. Eur J Pediatr 1986; 145 (05) 418-421
- 70 Hallwirth U, Pomberger G, Zaknun D. et al. Monocyte phagocytosis as a reliable parameter for predicting early-onset sepsis in very low birthweight infants. Early Hum Dev 2002; 67 (1-2): 1-9
- 71 Kaga A, Watanabe H, Miyabayashi H, Metoki T, Kitaoka S, Kumaki S. A term infant of neonatal toxic shock syndrome-like exanthematous disease complicated with hemophagocytic syndrome. Tohoku J Exp Med 2016; 240 (02) 167-170
- 72 Hatanaka D, Ito K, Fukama E. et al. Peripheral platelet phagocytosis in an extremely low birth weight infant: a case report. Fukushima J Med Sci 2022; 68 (02) 129-134
- 73 Isac S, Isac T, Tanasescu MD. et al. The omics complexity in sepsis: the limits of the personalized medicine approach. J Pers Med 2024; 14 (03) 225
- 74 Zhang H, Rodriguez S, Wang L. et al. Sepsis induces hematopoietic stem cell exhaustion and myelosuppression through distinct contributions of TRIF and MYD88. Stem Cell Reports 2016; 6 (06) 940-956
- 75 Bugl S, Wirths S, Radsak MP. et al. Steady-state neutrophil homeostasis is dependent on TLR4/TRIF signaling. Blood 2013; 121 (05) 723-733
- 76 van Lieshout MH, Blok DC, Wieland CW, de Vos AF, van 't Veer C, van der Poll T. Differential roles of MyD88 and TRIF in hematopoietic and resident cells during murine gram-negative pneumonia. J Infect Dis 2012; 206 (09) 1415-1423
- 77 Rodriguez S, Chora A, Goumnerov B. et al. Dysfunctional expansion of hematopoietic stem cells and block of myeloid differentiation in lethal sepsis. Blood 2009; 114 (19) 4064-4076
- 78 François B, Trimoreau F, Vignon P, Fixe P, Praloran V, Gastinne H. Thrombocytopenia in the sepsis syndrome: role of hemophagocytosis and macrophage colony-stimulating factor. Am J Med 1997; 103 (02) 114-120
- 79 Strauss R, Neureiter D, Westenburger B, Wehler M, Kirchner T, Hahn EG. Multifactorial risk analysis of bone marrow histiocytic hyperplasia with hemophagocytosis in critically ill medical patients–a postmortem clinicopathologic analysis. Crit Care Med 2004; 32 (06) 1316-1321
- 80 Cuenca AG, Cuenca AL, Gentile LF. et al. Delayed emergency myelopoiesis following polymicrobial sepsis in neonates. Innate Immun 2015; 21 (04) 386-391
- 81 Cuenca AG, Joiner DN, Gentile LF. et al. TRIF-dependent innate immune activation is critical for survival to neonatal gram-negative sepsis. J Immunol 2015; 194 (03) 1169-1177
- 82 Akarsu S, Taskin E, Kilic M. et al. The effects of different infectious organisms on platelet counts and platelet indices in neonates with sepsis: is there an organism-specific response?. J Trop Pediatr 2005; 51 (06) 388-391
- 83 Sayed SZ, Mahmoud MM, Moness HM, Mousa SO. Admission platelet count and indices as predictors of outcome in children with severe sepsis: a prospective hospital-based study. BMC Pediatr 2020; 20 (01) 387
- 84 Claushuis TA, van Vught LA, Scicluna BP. et al; Molecular Diagnosis and Risk Stratification of Sepsis Consortium. Thrombocytopenia is associated with a dysregulated host response in critically ill sepsis patients. Blood 2016; 127 (24) 3062-3072
- 85 Guida JD, Kunig AM, Leef KH, McKenzie SE, Paul DA. Platelet count and sepsis in very low birth weight neonates: is there an organism-specific response?. Pediatrics 2003; 111 (6 Pt 1): 1411-1415
- 86 Denton A, Davis P. Extreme thrombocytosis in admissions to paediatric intensive care: no requirement for treatment. Arch Dis Child 2007; 92 (06) 515-516
- 87 O'Connor TA, Ringer KM, Gaddis ML. Mean platelet volume during coagulase-negative staphylococcal sepsis in neonates. Am J Clin Pathol 1993; 99 (01) 69-71
- 88 Enz Hubert RM, Rodrigues MV, Andreguetto BD. et al. Association of the immature platelet fraction with sepsis diagnosis and severity. Sci Rep 2015; 5: 8019
- 89 Cremer M, Weimann A, Szekessy D, Hammer H, Bührer C, Dame C. Low immature platelet fraction suggests decreased megakaryopoiesis in neonates with sepsis or necrotizing enterocolitis. J Perinatol 2013; 33 (08) 622-626
- 90 Eissa DS, El-Farrash RA. New insights into thrombopoiesis in neonatal sepsis. Platelets 2013; 24 (02) 122-128
- 91 Oygür N, Tunga M, Mumcu Y. et al. Thrombopoietin levels of thrombocytopenic term and preterm newborns with infection. Am J Perinatol 2001; 18 (05) 279-286
- 92 Brown RE, Rimsza LM, Pastos K. et al. Effects of sepsis on neonatal thrombopoiesis. Pediatr Res 2008; 64 (04) 399-404
- 93 Sola-Visner M, Sallmon H, Brown R. New insights into the mechanisms of nonimmune thrombocytopenia in neonates. Semin Perinatol 2009; 33 (01) 43-51
- 94 Harker LA, Finch CA. Thrombokinetics in man. J Clin Invest 1969; 48 (06) 963-974
- 95 Lambert MP, Rauova L, Bailey M, Sola-Visner MC, Kowalska MA, Poncz M. Platelet factor 4 is a negative autocrine in vivo regulator of megakaryopoiesis: clinical and therapeutic implications. Blood 2007; 110 (04) 1153-1160
- 96 Arad ID, Alpan G, Sznajderman SD, Eldor A. The mean platelet volume (MPV) in the neonatal period. Am J Perinatol 1986; 3 (01) 1-3
- 97 Patrick CH, Lazarchick J, Stubbs T, Pittard WB. Mean platelet volume and platelet distribution width in the neonate. Am J Pediatr Hematol Oncol 1987; 9 (02) 130-132
- 98 Fuchs DA, McGinn SG, Cantu CL, Klein RR, Sola-Visner MC, Rimsza LM. Developmental differences in megakaryocyte size in infants and children. Am J Clin Pathol 2012; 138 (01) 140-145
- 99 Manzoni P, Mostert M, Galletto P. et al. Is thrombocytopenia suggestive of organism-specific response in neonatal sepsis?. Pediatr Int 2009; 51 (02) 206-210
- 100 Vallance TM, Zeuner MT, Williams HF, Widera D, Vaiyapuri S. Toll-like receptor 4 signalling and its impact on platelet function, thrombosis, and haemostasis. Mediators Inflamm 2017; 2017: 9605894
- 101 Sharron M, Hoptay CE, Wiles AA. et al. Platelets induce apoptosis during sepsis in a contact-dependent manner that is inhibited by GPIIb/IIIa blockade. PLoS One 2012; 7 (07) e41549
- 102 Clark SR, Ma AC, Tavener SA. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (04) 463-469
- 103 Palm F, Sjöholm K, Malmström J, Shannon O. Complement activation occurs at the surface of platelets activated by streptococcal M1 protein and this results in phagocytosis of platelets. J Immunol 2019; 202 (02) 503-513
- 104 Waller AK, Sage T, Kumar C, Carr T, Gibbins JM, Clarke SR. Staphylococcus aureus lipoteichoic acid inhibits platelet activation and thrombus formation via the Paf receptor. J Infect Dis 2013; 208 (12) 2046-2057
- 105 Powers ME, Becker RE, Sailer A, Turner JR, Bubeck Wardenburg J. Synergistic action of Staphylococcus aureus α-toxin on platelets and myeloid lineage cells contributes to lethal sepsis. Cell Host Microbe 2015; 17 (06) 775-787
- 106 O'Brien L, Kerrigan SW, Kaw G. et al. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. Mol Microbiol 2002; 44 (04) 1033-1044
- 107 Sokou R, Gounari EA, Tsante KA. et al. Thromboelastometry-based profiling of haemostatic alterations in neonatal sepsis by causative pathogens. Antibiotics (Basel) 2025; 14 (01) 101
- 108 Khashu M, Osiovich H, Henry D, Al Khotani A, Solimano A, Speert DP. Persistent bacteremia and severe thrombocytopenia caused by coagulase-negative Staphylococcus in a neonatal intensive care unit. Pediatrics 2006; 117 (02) 340-348
- 109 Cordero L, Rau R, Taylor D, Ayers LW. Enteric gram-negative bacilli bloodstream infections: 17 years' experience in a neonatal intensive care unit. Am J Infect Control 2004; 32 (04) 189-195
- 110 Scheifele DW, Olsen EM, Pendray MR. Endotoxinemia and thrombocytopenia during neonatal necrotizing enterocolitis. Am J Clin Pathol 1985; 83 (02) 227-229
- 111 Rowe MI, Buckner DM, Newmark S. The early diagnosis of gram negative septicemia in the pediatric surgical patient. Ann Surg 1975; 182 (03) 280-286
- 112 Sheu J-R, Hung W-C, Wu C-H. et al. Reduction in lipopolysaccharide-induced thrombocytopenia by triflavin in a rat model of septicemia. Circulation 1999; 99 (23) 3056-3062
- 113 Ginsberg MH, Henson PM. Enhancement of platelet response to immune complexes and IgG aggregates by lipid A-rich bacterial lipopolysaccharides. J Exp Med 1978; 147 (01) 207-217
- 114 Ginsberg MH, Morrison DC. The selective binding of aggregated IgG to lipid A-rich bacterial lipopolysaccharides. J Immunol 1978; 120 (01) 317-319
- 115 Im SY, Choi JH, Ko HM. et al. A protective role of platelet-activating factor in murine candidiasis. Infect Immun 1997; 65 (04) 1321-1326
- 116 Sokou R, Palioura AE, Konstantinidi A. et al. The role of rotational thromboelastometry in early detection of the hemostatic derangements in neonates with systemic candida infection. J Fungi (Basel) 2024; 11 (01) 17
- 117 Lianou A, Tsantes AG, Piovani D. et al. Hemostatic manifestations of invasive fungal infections: a comprehensive review of pathophysiological mechanisms in sepsis-induced hemostatic disturbances, with a focus on the neonatal population. Semin Thromb Hemost 2025; 51 (05) 600-618
- 118 Yang YC, Mao J. Value of platelet count in the early diagnosis of nosocomial invasive fungal infections in premature infants. Platelets 2018; 29 (01) 65-70
- 119 Rødland EK, Ueland T, Pedersen TM. et al. Activation of platelets by Aspergillus fumigatus and potential role of platelets in the immunopathogenesis of Aspergillosis. Infect Immun 2010; 78 (03) 1269-1275
- 120 Schultz CM, Goel A, Dunn A. et al. Stepping up to the plate(let) against Candida albicans. Infect Immun 2020; 88 (04) e00784-19
- 121 Aslam R, Speck ER, Kim M. et al. Platelet toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-α production in vivo. Blood 2006; 107 (02) 637-641
- 122 Handtke S, Steil L, Greinacher A, Thiele T. Toward the relevance of platelet subpopulations for transfusion medicine. Front Med (Lausanne) 2018; 5: 17
- 123 Malloy M, McGrath KE, Morrell CN. Platelet heterogeneity: variety makes immune and vascular function better. Blood 2025; blood.2025028955
- 124 Morrell CN, Pariser DN, Hilt ZT, Vega Ocasio D. The platelet Napoleon complex-small cells, but big immune regulatory functions. Annu Rev Immunol 2019; 37: 125-144
- 125 Shi G, Field DJ, Ko KA. et al. Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection. J Clin Invest 2014; 124 (02) 543-552
- 126 Hilt ZT, Ture SK, Mohan A, Arne A, Morrell CN. Platelet-derived β2m regulates age related monocyte/macrophage functions. Aging (Albany NY) 2019; 11 (24) 11955-11974
- 127 Cloutier N, Paré A, Farndale RW. et al. Platelets can enhance vascular permeability. Blood 2012; 120 (06) 1334-1343
- 128 Livada AC, McGrath KE, Malloy MW. et al. Long-lived lung megakaryocytes contribute to platelet recovery in thrombocytopenia models. J Clin Invest 2024; 134 (22) e181111
- 129 Pariser DN, Hilt ZT, Ture SK. et al. Lung megakaryocytes are immune modulatory cells. J Clin Invest 2021; 131 (01) e137377
- 130 Lefrançais E, Ortiz-Muñoz G, Caudrillier A. et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 2017; 544 (7648) 105-109
- 131 Conrad C, Magnen M, Tsui J. et al. Decoding functional hematopoietic progenitor cells in the adult human lung. Blood 2025; 145 (18) 1975-1986
- 132 Koupenova M, Mick E, Mikhalev E, Benjamin EJ, Tanriverdi K, Freedman JE. Sex differences in platelet toll-like receptors and their association with cardiovascular risk factors. Arterioscler Thromb Vasc Biol 2015; 35 (04) 1030-1037
- 133 Zeiler M, Moser M, Mann M. Copy number analysis of the murine platelet proteome spanning the complete abundance range. Mol Cell Proteomics 2014; 13 (12) 3435-3445
- 134 Burkhart JM, Vaudel M, Gambaryan S. et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012; 120 (15) e73-e82
- 135 Tang YQ, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets. Infect Immun 2002; 70 (12) 6524-6533
- 136 Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev 2009; 23 (04) 177-189
- 137 Rossaint J, Margraf A, Zarbock A. Role of platelets in leukocyte recruitment and resolution of inflammation. Front Immunol 2018; 9: 2712
- 138 Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2 (08) 675-680
- 139 O'Neill LA. The interleukin-1 receptor/toll-like receptor superfamily: 10 years of progress. Immunol Rev 2008; 226 (01) 10-18
- 140 Denis MM, Tolley ND, Bunting M. et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 2005; 122 (03) 379-391
- 141 Beaulieu LM, Lin E, Morin KM, Tanriverdi K, Freedman JE. Regulatory effects of TLR2 on megakaryocytic cell function. Blood 2011; 117 (22) 5963-5974
- 142 Blair P, Rex S, Vitseva O. et al. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res 2009; 104 (03) 346-354
- 143 Assinger A, Buchberger E, Laky M, Esfandeyari A, Brostjan C, Volf I. Periodontopathogens induce soluble P-selectin release by endothelial cells and platelets. Thromb Res 2011; 127 (01) e20-e26
- 144 Koupenova M, Vitseva O, MacKay CR. et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 2014; 124 (05) 791-802
- 145 Thon JN, Peters CG, Machlus KR. et al. T granules in human platelets function in TLR9 organization and signaling. J Cell Biol 2012; 198 (04) 561-574
- 146 Semple JW, Aslam R, Kim M, Speck ER, Freedman J. Platelet-bound lipopolysaccharide enhances Fc receptor-mediated phagocytosis of IgG-opsonized platelets. Blood 2007; 109 (11) 4803-4805
- 147 Damien P, Cognasse F, Eyraud MA. et al. LPS stimulation of purified human platelets is partly dependent on plasma soluble CD14 to secrete their main secreted product, soluble-CD40-Ligand. BMC Immunol 2015; 16 (01) 3
- 148 Claushuis TAM, Van Der Veen AIP, Horn J. et al. Platelet toll-like receptor expression and activation induced by lipopolysaccharide and sepsis. Platelets 2019; 30 (03) 296-304
- 149 Sadeghi K, Berger A, Langgartner M. et al. Immaturity of infection control in preterm and term newborns is associated with impaired toll-like receptor signaling. J Infect Dis 2007; 195 (02) 296-302
- 150 Yang WH, Heithoff DM, Aziz PV. et al. Accelerated aging and clearance of host anti-inflammatory enzymes by discrete pathogens fuels sepsis. Cell Host Microbe 2018; 24 (04) 500-513.e5
- 151 Schromm AB, Brandenburg K, Loppnow H. et al. The charge of endotoxin molecules influences their conformation and IL-6-inducing capacity. J Immunol 1998; 161 (10) 5464-5471
- 152 Bentala H, Verweij WR, Huizinga-Van der Vlag A, van Loenen-Weemaes AM, Meijer DK, Poelstra K. Removal of phosphate from lipid A as a strategy to detoxify lipopolysaccharide. Shock 2002; 18 (06) 561-566
- 153 Grewal PK, Aziz PV, Uchiyama S. et al. Inducing host protection in pneumococcal sepsis by preactivation of the Ashwell-Morell receptor. Proc Natl Acad Sci U S A 2013; 110 (50) 20218-20223
- 154 Soliman A, Michelsen KS, Karahashi H. et al. Platelet-activating factor induces TLR4 expression in intestinal epithelial cells: implication for the pathogenesis of necrotizing enterocolitis. PLoS One 2010; 5 (10) e15044
- 155 Knapp S, von Aulock S, Leendertse M. et al. Lipoteichoic acid-induced lung inflammation depends on TLR2 and the concerted action of TLR4 and the platelet-activating factor receptor. J Immunol 2008; 180 (05) 3478-3484
- 156 Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol 2014; 14 (01) 9-23
- 157 Zhang S, Zhang S, Hu L. et al. Nucleotide-binding oligomerization domain 2 receptor is expressed in platelets and enhances platelet activation and thrombosis. Circulation 2015; 131 (13) 1160-1170
- 158 Scott MJ, Chen C, Sun Q, Billiar TR. Hepatocytes express functional NOD1 and NOD2 receptors: a role for NOD1 in hepatocyte CC and CXC chemokine production. J Hepatol 2010; 53 (04) 693-701
- 159 Chen Y, Yu SL, Li YP, Zhang MM. Nucleotide-binding oligomerization domain (NOD) plays an important role in neonatal infection. Int J Biol Macromol 2019; 121: 686-690
- 160 Haidl ID, McAlpine SM, Marshall JS. Enhancement of mast cell IL-6 production by combined toll-like and nucleotide-binding oligomerization domain-like receptor activation. Int Arch Allergy Immunol 2011; 154 (03) 227-235
- 161 Granland C, Strunk T, Hibbert J. et al. NOD1 and NOD2 expression and function in very preterm infant mononuclear cells. Acta Paediatr 2014; 103 (05) e212-e218
- 162 Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 2019; 19 (08) 477-489
- 163 Cornelius DC, Baik CH, Travis OK. et al. NLRP3 inflammasome activation in platelets in response to sepsis. Physiol Rep 2019; 7 (09) e14073
- 164 Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 2019; 10 (02) 128
- 165 Qiao J, Wu X, Luo Q. et al. NLRP3 regulates platelet integrin αIIbβ3 outside-in signaling, hemostasis and arterial thrombosis. Haematologica 2018; 103 (09) 1568-1576
- 166 Rolfes V, Ribeiro LS, Hawwari I. et al. Platelets fuel the inflammasome activation of innate immune cells. Cell Rep 2020; 31 (06) 107615
- 167 de Sousa JR, Azevedo RDSDS, Martins Filho AJ. et al. In situ inflammasome activation results in severe damage to the central nervous system in fatal Zika virus microcephaly cases. Cytokine 2018; 111: 255-264
- 168 Omer M, Melo AM, Kelly L. et al. Emerging role of the NLRP3 inflammasome and interleukin-1β in neonates. Neonatology 2020; 117 (05) 545-554
- 169 Pang Y, Tien LT, Zhu H. et al. Interleukin-1 receptor antagonist reduces neonatal lipopolysaccharide-induced long-lasting neurobehavioral deficits and dopaminergic neuronal injury in adult rats. Int J Mol Sci 2015; 16 (04) 8635-8654
- 170 Girard S, Sébire H, Brochu ME, Briota S, Sarret P, Sébire G. Postnatal administration of IL-1Ra exerts neuroprotective effects following perinatal inflammation and/or hypoxic-ischemic injuries. Brain Behav Immun 2012; 26 (08) 1331-1339
- 171 Savard A, Brochu ME, Chevin M, Guiraut C, Grbic D, Sébire G. Neuronal self-injury mediated by IL-1β and MMP-9 in a cerebral palsy model of severe neonatal encephalopathy induced by immune activation plus hypoxia-ischemia. J Neuroinflammation 2015; 12: 111
- 172 Chen A, Xu Y, Yuan J. Ginkgolide B ameliorates NLRP3 inflammasome activation after hypoxic-ischemic brain injury in the neonatal male rat. Int J Dev Neurosci 2018; 69: 106-111
- 173 Speer EM, Dowling DJ, Xu J. et al. Pentoxifylline, dexamethasone and azithromycin demonstrate distinct age-dependent and synergistic inhibition of TLR- and inflammasome-mediated cytokine production in human newborn and adult blood in vitro. PLoS One 2018; 13 (05) e0196352
- 174 Bui CB, Kolodziej M, Lamanna E. et al. Interleukin-1 receptor antagonist protects newborn mice against pulmonary hypertension. Front Immunol 2019; 10: 1480
- 175 Neven B, Marvillet I, Terrada C. et al. Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum 2010; 62 (01) 258-267
- 176 Chaipan C, Soilleux EJ, Simpson P. et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol 2006; 80 (18) 8951-8960
- 177 May F, Hagedorn I, Pleines I. et al. CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood 2009; 114 (16) 3464-3472
- 178 van Kooyk Y, Geijtenbeek TB. DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 2003; 3 (09) 697-709
- 179 Boukour S, Massé JM, Bénit L, Dubart-Kupperschmitt A, Cramer EM. Lentivirus degradation and DC-SIGN expression by human platelets and megakaryocytes. J Thromb Haemost 2006; 4 (02) 426-435
- 180 Simon AY, Sutherland MR, Pryzdial EL. Dengue virus binding and replication by platelets. Blood 2015; 126 (03) 378-385
- 181 Xin G, Wei Z, Ji C. et al. Metformin uniquely prevents thrombosis by inhibiting platelet activation and mtDNA release. Sci Rep 2016; 6: 36222
- 182 Kell AM, Hemann EA, Turnbull JB, Gale Jr M. RIG-I-like receptor activation drives type I IFN and antiviral signaling to limit Hantaan orthohantavirus replication. PLoS Pathog 2020; 16 (04) e1008483
- 183 Sung PS, Huang TF, Hsieh SL. Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2. Nat Commun 2019; 10 (01) 2402
- 184 Portier I, Campbell RA. Role of platelets in detection and regulation of infection. Arterioscler Thromb Vasc Biol 2021; 41 (01) 70-78
- 185 Hitchcock JR, Cook CN, Bobat S. et al. Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets. J Clin Invest 2015; 125 (12) 4429-4446
- 186 Rayes J, Lax S, Wichaiyo S. et al. The podoplanin-CLEC-2 axis inhibits inflammation in sepsis. Nat Commun 2017; 8 (01) 2239
- 187 Herzog BH, Fu J, Wilson SJ. et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 2013; 502 (7469) 105-109
- 188 Bénézech C, Nayar S, Finney BA. et al. CLEC-2 is required for development and maintenance of lymph nodes. Blood 2014; 123 (20) 3200-3207
- 189 Hu H, Armstrong PC, Khalil E. et al. GPVI and GPIbα mediate staphylococcal superantigen-like protein 5 (SSL5) induced platelet activation and direct toward glycans as potential inhibitors. PLoS One 2011; 6 (04) e19190
- 190 Montague SJ, Delierneux C, Lecut C. et al. Soluble GPVI is elevated in injured patients: shedding is mediated by fibrin activation of GPVI. Blood Adv 2018; 2 (03) 240-251
- 191 Claushuis TAM, de Vos AF, Nieswandt B. et al. Platelet glycoprotein VI aids in local immunity during pneumonia-derived sepsis caused by gram-negative bacteria. Blood 2018; 131 (08) 864-876
- 192 Zahn A, Jennings N, Ouwehand WH, Allain JP. Hepatitis C virus interacts with human platelet glycoprotein VI. J Gen Virol 2006; 87 (Pt 8): 2243-2251
- 193 Brennan MP, Loughman A, Devocelle M. et al. Elucidating the role of Staphylococcus epidermidis serine-aspartate repeat protein G in platelet activation. J Thromb Haemost 2009; 7 (08) 1364-1372
- 194 Petersen HJ, Keane C, Jenkinson HF. et al. Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPIIbIIIa. Infect Immun 2010; 78 (01) 413-422
- 195 Loughman A, Fitzgerald JR, Brennan MP. et al. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol Microbiol 2005; 57 (03) 804-818
- 196 Shannon O, Hertzén E, Norrby-Teglund A, Mörgelin M, Sjöbring U, Björck L. Severe streptococcal infection is associated with M protein-induced platelet activation and thrombus formation. Mol Microbiol 2007; 65 (05) 1147-1157
- 197 Frelinger III AL, Spurgeon BEJ, Soule-Albridge EL, Perry JR, Sola-Visner M, Davenport PE. High dimensional immunophenotyping of neonatal and adult platelets: differential reactivity to agonists, maximal marker expression, and abundance of defined platelet subsets. Blood 2024; 144 (01) 2546-2546
- 198 Arman M, Krauel K. Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis. J Thromb Haemost 2015; 13 (06) 893-908
- 199 Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 2015; 13 (09) 529-543
- 200 Gaertner F, Ahmad Z, Rosenberger G. et al. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell 2017; 171 (06) 1368-1382.e23
- 201 Bensing BA, López JA, Sullam PM. The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibalpha. Infect Immun 2004; 72 (11) 6528-6537
- 202 Plummer C, Wu H, Kerrigan SW, Meade G, Cox D, Ian Douglas CW. A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. Br J Haematol 2005; 129 (01) 101-109
- 203 Byrne MF, Kerrigan SW, Corcoran PA. et al. Helicobacter pylori binds von Willebrand factor and interacts with GPIb to induce platelet aggregation. Gastroenterology 2003; 124 (07) 1846-1854
- 204 Wong CH, Jenne CN, Petri B, Chrobok NL, Kubes P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat Immunol 2013; 14 (08) 785-792
- 205 Attatippaholkun N, Kosaisawe N, U-Pratya Y. et al. Selective tropism of dengue virus for human glycoprotein Ib. Sci Rep 2018; 8 (01) 2688
- 206 Wasiluk A, Mantur M, Szczepański M, Kemona H, Baran E, Kemona-Chetnik I. The effect of gestational age on platelet surface expression of CD62P in preterm newborns. Platelets 2008; 19 (03) 236-238
- 207 Wasiluk A. The expression of vWF receptor on newborn platelets. Med Sci Monit 2005; 11 (11) CR545-CR548
- 208 Herken K, Glauner M, Robert SC. et al. Age-dependent control of collagen-dependent platelet responses by thrombospondin-1-comparative analysis of platelets from neonates, children, adolescents, and adults. Int J Mol Sci 2021; 22 (09) 4883
- 209 Israels SJ. CHAPTER 22 - Platelet Function in the Newborn. In: Michelson AD. ed. Platelets (Second Edition). Academic Press; 2007: 431-442
- 210 Schlagenhauf A, Bohler S, Kunze M. et al. Neonatal platelets: lower G12/13 expression contributes to reduced secretion of dense granules. Cells 2022; 11 (16) 2563
- 211 Jin J, Mao Y, Thomas D, Kim S, Daniel JL, Kunapuli SP. RhoA downstream of G(q) and G(12/13) pathways regulates protease-activated receptor-mediated dense granule release in platelets. Biochem Pharmacol 2009; 77 (05) 835-844
- 212 Weiss LJ, Manukjan G, Pflug A. et al. Acquired platelet GPVI receptor dysfunction in critically ill patients with sepsis. Blood 2021; 137 (22) 3105-3115
- 213 Miller YI, Choi SH, Wiesner P, Bae YS. The SYK side of TLR4: signalling mechanisms in response to LPS and minimally oxidized LDL. Br J Pharmacol 2012; 167 (05) 990-999
- 214 Danese S, de la Motte C, Reyes BM, Sans M, Levine AD, Fiocchi C. Cutting edge: T cells trigger CD40-dependent platelet activation and granular RANTES release: a novel pathway for immune response amplification. J Immunol 2004; 172 (04) 2011-2015
- 215 Cloutier N, Allaeys I, Marcoux G. et al. Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration. Proc Natl Acad Sci U S A 2018; 115 (07) E1550-E1559
- 216 Rex S, Beaulieu LM, Perlman DH. et al. Immune versus thrombotic stimulation of platelets differentially regulates signalling pathways, intracellular protein-protein interactions, and alpha-granule release. Thromb Haemost 2009; 102 (01) 97-110
- 217 Silvestre-Roig C, Braster Q, Ortega-Gomez A, Soehnlein O. Neutrophils as regulators of cardiovascular inflammation. Nat Rev Cardiol 2020; 17 (06) 327-340
- 218 Smyth SS, Reis ED, Zhang W, Fallon JT, Gordon RE, Coller BS. Beta(3)-integrin-deficient mice but not P-selectin-deficient mice develop intimal hyperplasia after vascular injury: correlation with leukocyte recruitment to adherent platelets 1 hour after injury. Circulation 2001; 103 (20) 2501-2507
- 219 Revenstorff J, Ludwig N, Hilger A. et al. Role of S100A8/A9 in platelet-neutrophil complex formation during acute inflammation. Cells 2022; 11 (23) 3944
- 220 Schrottmaier WC, Kral-Pointner JB, Salzmann M. et al. Platelet p110β mediates platelet-leukocyte interaction and curtails bacterial dissemination in pneumococcal pneumonia. Cell Rep 2022; 41 (06) 111614
- 221 De Giovanni M, Tam H, Valet C, Xu Y, Looney MR, Cyster JG. GPR35 promotes neutrophil recruitment in response to serotonin metabolite 5-HIAA. Cell 2022; 185 (06) 1103-1104
- 222 Chauhan A, Sheriff L, Hussain MT. et al. The platelet receptor CLEC-2 blocks neutrophil mediated hepatic recovery in acetaminophen induced acute liver failure. Nat Commun 2020; 11 (01) 1939
- 223 Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018; 18 (02) 134-147
- 224 Jiao Y, Li W, Wang W. et al. Platelet-derived exosomes promote neutrophil extracellular trap formation during septic shock. Crit Care 2020; 24 (01) 380
- 225 Koupenova M, Corkrey HA, Vitseva O. et al. The role of platelets in mediating a response to human influenza infection. Nat Commun 2019; 10 (01) 1780
- 226 Denorme F, Portier I, Rustad JL. et al. Neutrophil extracellular traps regulate ischemic stroke brain injury. J Clin Invest 2022; 132 (10) e154225
- 227 Vogel S, Bodenstein R, Chen Q. et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 2015; 125 (12) 4638-4654
- 228 Skendros P, Mitsios A, Chrysanthopoulou A. et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest 2020; 130 (11) 6151-6157
- 229 Carestia A, Kaufman T, Schattner M. Platelets: new bricks in the building of neutrophil extracellular traps. Front Immunol 2016; 7: 271
- 230 Manfredi AA, Ramirez GA, Godino C. et al. Platelet phagocytosis via P-selectin glycoprotein ligand 1 and accumulation of microparticles in systemic sclerosis. Arthritis Rheumatol 2022; 74 (02) 318-328
- 231 Li Z, Yuan T. Neutrophil extracellular traps in adult diseases and neonatal bacterial infectious diseases: a review. Heliyon 2023; 10 (01) e23559
- 232 Pilsczek FH, Salina D, Poon KK. et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 2010; 185 (12) 7413-7425
- 233 Yipp BG, Petri B, Salina D. et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 2012; 18 (09) 1386-1393
- 234 Papayannopoulos V. Neutrophils stepping through (to the other side). Immunity 2018; 49 (06) 992-994
- 235 McDonald B, Davis RP, Kim SJ. et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017; 129 (10) 1357-1367
- 236 Hoppenbrouwers T, Boeddha NP, Ekinci E. et al. Neutrophil extracellular traps in children with meningococcal sepsis. Pediatr Crit Care Med 2018; 19 (06) e286-e291
- 237 Maugeri N, Campana L, Gavina M. et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 2014; 12 (12) 2074-2088
- 238 Caudrillier A, Kessenbrock K, Gilliss BM. et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 2012; 122 (07) 2661-2671
- 239 He H, Jiang H, Chen Y. et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun 2018; 9 (01) 2550
- 240 Massberg S, Grahl L, von Bruehl ML. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16 (08) 887-896
- 241 von Brühl ML, Stark K, Steinhart A. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
- 242 Yost CC, Cody MJ, Harris ES. et al. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood 2009; 113 (25) 6419-6427
- 243 Yost CC. Pediatric immunothrombosis-Understudied… but what potential!. Pediatr Res 2019; 86 (01) 17-18
- 244 Lipp P, Ruhnau J, Lange A, Vogelgesang A, Dressel A, Heckmann M. Less neutrophil extracellular trap formation in term newborns than in adults. Neonatology 2017; 111 (02) 182-188
- 245 Colón DF, Wanderley CW, Franchin M. et al. Neutrophil extracellular traps (NETs) exacerbate severity of infant sepsis. Crit Care 2019; 23 (01) 113
- 246 Yost CC, Schwertz H, Cody MJ. et al. Neonatal NET-inhibitory factor and related peptides inhibit neutrophil extracellular trap formation. J Clin Invest 2016; 126 (10) 3783-3798
- 247 Chicca IJ, Milward MR, Chapple ILC. et al. Development and application of high-content biological screening for modulators of NET production. Front Immunol 2018; 9: 337
- 248 Chow OA, von Köckritz-Blickwede M, Bright AT. et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 2010; 8 (05) 445-454
- 249 Domingo-Gonzalez R, Martínez-Colón GJ, Smith AJ. et al. Inhibition of neutrophil extracellular trap formation after stem cell transplant by prostaglandin E2. Am J Respir Crit Care Med 2016; 193 (02) 186-197
- 250 Garcia CC, Weston-Davies W, Russo RC. et al. Complement C5 activation during influenza A infection in mice contributes to neutrophil recruitment and lung injury. PLoS One 2013; 8 (05) e64443
- 251 Rossaint J, Herter JM, Van Aken H. et al. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood 2014; 123 (16) 2573-2584
- 252 Sreeramkumar V, Adrover JM, Ballesteros I. et al. Neutrophils scan for activated platelets to initiate inflammation. Science 2014; 346 (6214) 1234-1238
- 253 Page C, Pitchford S. Neutrophil and platelet complexes and their relevance to neutrophil recruitment and activation. Int Immunopharmacol 2013; 17 (04) 1176-1184
- 254 Pitchford S, Pan D, Welch HC. Platelets in neutrophil recruitment to sites of inflammation. Curr Opin Hematol 2017; 24 (01) 23-31
- 255 Santoso S, Sachs UJ, Kroll H. et al. The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med 2002; 196 (05) 679-691
- 256 Kuijper PH, Gallardo Tores HI, Lammers JW, Sixma JJ, Koenderman L, Zwaginga JJ. Platelet associated fibrinogen and ICAM-2 induce firm adhesion of neutrophils under flow conditions. Thromb Haemost 1998; 80 (03) 443-448
- 257 Li J, Kim K, Jeong SY. et al. Platelet protein disulfide isomerase promotes glycoprotein Ibα-mediated platelet-neutrophil interactions under thromboinflammatory conditions. Circulation 2019; 139 (10) 1300-1319
- 258 Constantinescu-Bercu A, Grassi L, Frontini M, Salles-Crawley II, Woollard K, Crawley JT. Activated αIIbβ3 on platelets mediates flow-dependent NETosis via SLC44A2. eLife 2020; 9: e53353
- 259 Dole VS, Bergmeier W, Mitchell HA, Eichenberger SC, Wagner DD. Activated platelets induce Weibel-Palade-body secretion and leukocyte rolling in vivo: role of P-selectin. Blood 2005; 106 (07) 2334-2339
- 260 Anderson DC, Freeman KL, Heerdt B, Hughes BJ, Jack RM, Smith CW. Abnormal stimulated adherence of neonatal granulocytes: impaired induction of surface Mac-1 by chemotactic factors or secretagogues. Blood 1987; 70 (03) 740-750
- 261 Abughali N, Berger M, Tosi MF. Deficient total cell content of CR3 (CD11b) in neonatal neutrophils. Blood 1994; 83 (04) 1086-1092
- 262 Anderson DC, Rothlein R, Marlin SD, Krater SS, Smith CW. Impaired transendothelial migration by neonatal neutrophils: abnormalities of Mac-1 (CD11b/CD18)-dependent adherence reactions. Blood 1990; 76 (12) 2613-2621
- 263 Kollikowski AM, Pham M, März AG. et al. Platelet activation and chemokine release are related to local neutrophil-dominant inflammation during hyperacute human stroke. Transl Stroke Res 2022; 13 (03) 364-369
- 264 Matsumoto K, Yasuoka H, Yoshimoto K, Suzuki K, Takeuchi T. Platelet CXCL4 mediates neutrophil extracellular traps formation in ANCA-associated vasculitis. Sci Rep 2021; 11 (01) 222
- 265 Bdeir K, Gollomp K, Stasiak M. et al. Platelet-specific chemokines contribute to the pathogenesis of acute lung injury. Am J Respir Cell Mol Biol 2017; 56 (02) 261-270
- 266 Ngamsri KC, Putri RA, Jans C. et al. CXCR4 and CXCR7 inhibition ameliorates the formation of platelet-neutrophil complexes and neutrophil extracellular traps through Adora2b signaling. Int J Mol Sci 2021; 22 (24) 13576
- 267 Li Z, Smyth SS. Interactions between platelets, leukocytes, and the endothelium. Platelets 2019; 295-310
- 268 Fisher Jr CJ, Dhainaut J-FA, Opal SM. et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra sepsis syndrome study group. JAMA 1994; 271 (23) 1836-1843
- 269 Mauler M, Herr N, Schoenichen C. et al. Platelet serotonin aggravates myocardial ischemia/reperfusion injury via neutrophil degranulation. Circulation 2019; 139 (07) 918-931
- 270 Etulain J, Negrotto S, Carestia A. et al. Acidosis downregulates platelet haemostatic functions and promotes neutrophil proinflammatory responses mediated by platelets. Thromb Haemost 2012; 107 (01) 99-110
- 271 Hottz ED, Medeiros-de-Moraes IM, Vieira-de-Abreu A. et al. Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. J Immunol 2014; 193 (04) 1864-1872
- 272 Rong MY, Wang CH, Wu ZB. et al. Platelets induce a proinflammatory phenotype in monocytes via the CD147 pathway in rheumatoid arthritis. Arthritis Res Ther 2014; 16 (06) 478
- 273 Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 1996; 88 (01) 146-157
- 274 Filipovich AH. Hemophagocytic lymphohistiocytosis (HLH) and related disorders. Hematology (Am Soc Hematol Educ Program) 2009; 127–131: 127-131
- 275 Suzuki J, Hamada E, Shodai T. et al. Cytokine secretion from human monocytes potentiated by P-selectin-mediated cell adhesion. Int Arch Allergy Immunol 2013; 160 (02) 152-160
- 276 Christersson C, Johnell M, Siegbahn A. Tissue factor and IL8 production by P-selectin-dependent platelet-monocyte aggregates in whole blood involves phosphorylation of Lyn and is inhibited by IL10. J Thromb Haemost 2008; 6 (06) 986-994
- 277 Fu G, Deng M, Neal MD, Billiar TR, Scott MJ. Platelet-monocyte aggregates: understanding mechanisms and functions in sepsis. Shock 2021; 55 (02) 156-166
- 278 Zamora C, Canto E, Nieto JC. et al. Inverse association between circulating monocyte-platelet complexes and inflammation in ulcerative colitis patients. Inflamm Bowel Dis 2018; 24 (04) 818-828
- 279 Loguinova M, Pinegina N, Kogan V. et al. Monocytes of different subsets in complexes with platelets in patients with myocardial infarction. Thromb Haemost 2018; 118 (11) 1969-1981
- 280 Maurya P, Ture SK, Li C. et al. Transfusion of adult, but not neonatal, platelets promotes monocyte trafficking in neonatal mice. Arterioscler Thromb Vasc Biol 2023; 43 (06) 873-885
- 281 Filias A, Theodorou GL, Mouzopoulou S, Varvarigou AA, Mantagos S, Karakantza M. Phagocytic ability of neutrophils and monocytes in neonates. BMC Pediatr 2011; 11: 29
- 282 Viemann D, Dubbel G, Schleifenbaum S, Harms E, Sorg C, Roth J. Expression of toll-like receptors in neonatal sepsis. Pediatr Res 2005; 58 (04) 654-659
- 283 Machado JR, Soave DF, da Silva MV. et al. Neonatal sepsis and inflammatory mediators. Mediators Inflamm 2014; 2014: 269681
- 284 Doughty C, Oppermann L, Hartmann N-U, Dreschers S, Gille C, Orlikowsky T. Monocytes in neonatal bacterial sepsis. Think Tank Workhorse 2022; 2 (01) 27-42
- 285 Gudbrandsdottir S, Hasselbalch HC, Nielsen CH. Activated platelets enhance IL-10 secretion and reduce TNF-α secretion by monocytes. J Immunol 2013; 191 (08) 4059-4067
- 286 Badrnya S, Schrottmaier WC, Kral JB. et al. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler Thromb Vasc Biol 2014; 34 (03) 571-580
- 287 Phillips JH, Chang CW, Lanier LL. Platelet-induced expression of Fc gamma RIII (CD16) on human monocytes. Eur J Immunol 1991; 21 (04) 895-899
- 288 Scheuerer B, Ernst M, Dürrbaum-Landmann I. et al. The CXC-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages. Blood 2000; 95 (04) 1158-1166
- 289 Han P, Hanlon D, Arshad N. et al. Platelet P-selectin initiates cross-presentation and dendritic cell differentiation in blood monocytes. Sci Adv 2020; 6 (11) eaaz1580
- 290 Stephen J, Emerson B, Fox KA, Dransfield I. The uncoupling of monocyte-platelet interactions from the induction of proinflammatory signaling in monocytes. J Immunol 2013; 191 (11) 5677-5683
- 291 Saris A, Steuten J, Schrijver DP. et al. Inhibition of dendritic cell activation and modulation of T cell polarization by the platelet secretome. Front Immunol 2021; 12: 631285
- 292 Ki KK, Faddy HM, Flower RL, Dean MM. Platelet concentrates modulate myeloid dendritic cell immune responses. Platelets 2018; 29 (04) 373-382
- 293 Ki KK, Johnson L, Faddy HM, Flower RL, Marks DC, Dean MM. Immunomodulatory effect of cryopreserved platelets: altered BDCA3+ dendritic cell maturation and activation in vitro. Transfusion 2017; 57 (12) 2878-2887
- 294 Singh MV, Suwunnakorn S, Simpson SR. et al. Monocytes complexed to platelets differentiate into functionally deficient dendritic cells. J Leukoc Biol 2021; 109 (04) 807-820
- 295 Nishat S, Wuescher LM, Worth RG. Platelets enhance dendritic cell responses against Staphylococcus aureus through CD40-CD40L. Infect Immun 2018; 86 (09) e00186-18
- 296 Inwald DP, McDowall A, Peters MJ, Callard RE, Klein NJ. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res 2003; 92 (09) 1041-1048
- 297 Ma DY, Clark EA. The role of CD40 and CD154/CD40L in dendritic cells. Semin Immunol 2009; 21 (05) 265-272
- 298 Katoh N, Soga F, Nara T. et al. Effect of serotonin on the differentiation of human monocytes into dendritic cells. Clin Exp Immunol 2006; 146 (02) 354-361
- 299 Xia CQ, Kao KJ. Effect of CXC chemokine platelet factor 4 on differentiation and function of monocyte-derived dendritic cells. Int Immunol 2003; 15 (08) 1007-1015
- 300 Silva-Cardoso SC, Affandi AJ, Spel L. et al. CXCL4 exposure potentiates TLR-driven polarization of human monocyte-derived dendritic cells and increases stimulation of T cells. J Immunol 2017; 199 (01) 253-262
- 301 Chun TT, Chung CS, Fallon EA. et al. Group 2 innate lymphoid cells (ILC2s) are key mediators of the inflammatory response in polymicrobial sepsis. Am J Pathol 2018; 188 (09) 2097-2108
- 302 Karta MR, Cavagnero K, Miller M. et al. Platelets attach to lung type 2 innate lymphoid cells (ILC2s) expressing P-selectin glycoprotein ligand 1 and influence ILC2 function. J Allergy Clin Immunol 2019; 144 (04) 1112-1115.e8
- 303 Clar KL, Hinterleitner C, Schneider P, Salih HR, Maurer S. Inhibition of NK reactivity against solid tumors by platelet-derived RANKL. Cancers (Basel) 2019; 11 (03) 277
- 304 Sadallah S, Schmied L, Eken C, Charoudeh HN, Amicarella F, Schifferli JA. Platelet-derived ectosomes reduce NK cell function. J Immunol 2016; 197 (05) 1663-1671
- 305 Placke T, Kopp HG, Salih HR. Modulation of natural killer cell anti-tumor reactivity by platelets. J Innate Immun 2011; 3 (04) 374-382
- 306 Sun Y, Sedgwick AJ, Palarasah Y, Mangiola S, Barrow AD. A transcriptional signature of PDGF-DD activated natural killer cells predicts more favorable prognosis in low-grade glioma. Front Immunol 2021; 12: 668391
- 307 Ma S, Tang T, Wu X. et al. PDGF-D-PDGFRβ signaling enhances IL-15-mediated human natural killer cell survival. Proc Natl Acad Sci U S A 2022; 119 (03) e2114134119
- 308 Martí F, Bertran E, Llucià M. et al. Platelet factor 4 induces human natural killer cells to synthesize and release interleukin-8. J Leukoc Biol 2002; 72 (03) 590-597
- 309 Guo Y, Patil NK, Luan L, Bohannon JK, Sherwood ER. The biology of natural killer cells during sepsis. Immunology 2018; 153 (02) 190-202
- 310 Almeida-Oliveira A, Smith-Carvalho M, Porto LC. et al. Age-related changes in natural killer cell receptors from childhood through old age. Hum Immunol 2011; 72 (04) 319-329
- 311 Eriksson O, Mohlin C, Nilsson B, Ekdahl KN. The human platelet as an innate immune cell: interactions between activated platelets and the complement system. Front Immunol 2019; 10: 1590
- 312 Ford I, Douglas CW, Cox D, Rees DG, Heath J, Preston FE. The role of immunoglobulin G and fibrinogen in platelet aggregation by Streptococcus sanguis. Br J Haematol 1997; 97 (04) 737-746
- 313 Ferriani VP, Barbosa JE, de Carvalho IF. Serum haemolytic classical and alternative pathways of complement in infancy: age-related changes. Acta Paediatr Scand 1990; 79 (03) 322-327
- 314 McGreal EP, Hearne K, Spiller OB. Off to a slow start: under-development of the complement system in term newborns is more substantial following premature birth. Immunobiology 2012; 217 (02) 176-186
- 315 Chapman LM, Aggrey AA, Field DJ. et al. Platelets present antigen in the context of MHC class I. J Immunol 2012; 189 (02) 916-923
- 316 Théry C, Witwer KW, Aikawa E. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7 (01) 1535750
- 317 Aatonen MT, Ohman T, Nyman TA, Laitinen S, Grönholm M, Siljander PR. Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles 2014; 3: 24692
- 318 Iba T, Ogura H. Role of extracellular vesicles in the development of sepsis-induced coagulopathy. J Intensive Care 2018; 6: 68
- 319 Karasu E, Eisenhardt SU, Harant J, Huber-Lang M. Extracellular vesicles: packages sent with complement. Front Immunol 2018; 9: 721
- 320 Fitzgerald W, Freeman ML, Lederman MM, Vasilieva E, Romero R, Margolis L. A system of cytokines encapsulated in extracellular vesicles. Sci Rep 2018; 8 (01) 8973
- 321 Mobarrez F, Sjövik C, Soop A. et al. CD40L expression in plasma of volunteers following LPS administration: a comparison between assay of CD40L on platelet microvesicles and soluble CD40L. Platelets 2015; 26 (05) 486-490
- 322 Sadallah S, Eken C, Martin PJ, Schifferli JA. Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J Immunol 2011; 186 (11) 6543-6552
- 323 Azevedo LC, Janiszewski M, Pontieri V. et al. Platelet-derived exosomes from septic shock patients induce myocardial dysfunction. Crit Care 2007; 11 (06) R120
- 324 Peñas-Martínez J, Barrachina MN, Cuenca-Zamora EJ. et al. Qualitative and quantitative comparison of plasma exosomes from neonates and adults. Int J Mol Sci 2021; 22 (04) 1926
- 325 O'Reilly D, Egan K, Burke O. et al. The population of circulating extracellular vesicles dramatically alters after very premature delivery- a previously unrecognised postnatal adaptation process?. Blood 2018; 132 (Suppl. 01) 1129-1129
- 326 Hu JY, Li CL, Wang YW. Altered proteomic pattern in platelets of rats with sepsis. Blood Cells Mol Dis 2012; 48 (01) 30-35
- 327 Eustes AS, Campbell RA, Middleton EA. et al. Heparanase expression and activity are increased in platelets during clinical sepsis. J Thromb Haemost 2021; 19 (05) 1319-1330
- 328 Elzey BD, Grant JF, Sinn HW, Nieswandt B, Waldschmidt TJ, Ratliff TL. Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation. J Leukoc Biol 2005; 78 (01) 80-84
- 329 Yan C, Wu H, Fang X, He J, Zhu F. Platelet, a key regulator of innate and adaptive immunity. Front Med (Lausanne) 2023; 10: 1074878
- 330 Gerdes N, Zhu L, Ersoy M. et al. Platelets regulate CD4+ T-cell differentiation via multiple chemokines in humans. Thromb Haemost 2011; 106 (02) 353-362
- 331 Ahmad R, Menezes J, Knafo L, Ahmad A. Activated human platelets express Fas-L and induce apoptosis in Fas-positive tumor cells. J Leukoc Biol 2001; 69 (01) 123-128
- 332 Elzey BD, Sprague DL, Ratliff TL. The emerging role of platelets in adaptive immunity. Cell Immunol 2005; 238 (01) 1-9
- 333 Elzey BD, Schmidt NW, Crist SA. et al. Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood 2008; 111 (07) 3684-3691
- 334 Iannacone M, Sitia G, Isogawa M. et al. Platelets prevent IFN-alpha/beta-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus. Proc Natl Acad Sci U S A 2008; 105 (02) 629-634
- 335 Iannacone M, Sitia G, Isogawa M. et al. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat Med 2005; 11 (11) 1167-1169
- 336 Morrell CN, Murata K, Swaim AM. et al. In vivo platelet-endothelial cell interactions in response to major histocompatibility complex alloantibody. Circ Res 2008; 102 (07) 777-785
- 337 Srivastava K, Cockburn IA, Swaim A. et al. Platelet factor 4 mediates inflammation in experimental cerebral malaria. Cell Host Microbe 2008; 4 (02) 179-187
- 338 Swaim AF, Field DJ, Fox-Talbot K, Baldwin III WM, Morrell CN. Platelets contribute to allograft rejection through glutamate receptor signaling. J Immunol 2010; 185 (11) 6999-7006
- 339 Lang PA, Contaldo C, Georgiev P. et al. Aggravation of viral hepatitis by platelet-derived serotonin. Nat Med 2008; 14 (07) 756-761
- 340 Aslam R, Speck ER, Kim M, Freedman J, Semple JW. Transfusion-related immunomodulation by platelets is dependent on their expression of MHC Class I molecules and is independent of white cells. Transfusion 2008; 48 (09) 1778-1786
- 341 Guo L, Shen S, Rowley JW. et al. Platelet MHC class I mediates CD8+ T-cell suppression during sepsis. Blood 2021; 138 (05) 401-416
- 342 Wu Y, Zeng Z, Guo Y. et al. Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity 2021; 54 (11) 2595-2610.e7
- 343 La Manna MP, Orlando V, Badami GD. et al. Platelets accumulate in lung lesions of tuberculosis patients and inhibit T-cell responses and Mycobacterium tuberculosis replication in macrophages. Eur J Immunol 2022; 52 (05) 784-799
- 344 Johnston LR, La Flamme AC, Larsen PD, Harding SA. Prasugrel inhibits platelet-enhanced pro-inflammatory CD4+ T cell responses in humans. Atherosclerosis 2015; 239 (01) 283-286
- 345 Koupenova M, Livada AC, Morrell CN. Platelet and megakaryocyte roles in innate and adaptive immunity. Circ Res 2022; 130 (02) 288-308
- 346 Zhu L, Huang Z, Stålesen R, Hansson GK, Li N. Platelets provoke distinct dynamics of immune responses by differentially regulating CD4+ T-cell proliferation. J Thromb Haemost 2014; 12 (07) 1156-1165
- 347 Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol 2007; 7 (05) 379-390
- 348 Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 2010; 28: 445-489
- 349 Curley A, Stanworth SJ, Willoughby K. et al; PlaNeT2 MATISSE Collaborators. Randomized trial of platelet-transfusion thresholds in neonates. N Engl J Med 2019; 380 (03) 242-251
- 350 Cognasse F, Hamzeh-Cognasse H, Lafarge S. et al. Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Exp Hematol 2007; 35 (09) 1376-1387
- 351 Field DJ, Aggrey-Amable AA, Blick SK. et al. Platelet factor 4 increases bone marrow B cell development and differentiation. Immunol Res 2017; 65 (05) 1089-1094
- 352 Borriello F, Pasquarelli N, Law L. et al. Normal B-cell ranges in infants: a systematic review and meta-analysis. J Allergy Clin Immunol 2022; 150 (05) 1216-1224
- 353 Piątosa B, Wolska-Kuśnierz B, Pac M, Siewiera K, Gałkowska E, Bernatowska E. B cell subsets in healthy children: reference values for evaluation of B cell maturation process in peripheral blood. Cytometry B Clin Cytom 2010; 78 (06) 372-381
- 354 Olin A, Henckel E, Chen Y. et al. Stereotypic immune system development in newborn children. Cell 2018; 174 (05) 1277-1292.e14
- 355 Blanco E, Pérez-Andrés M, Arriba-Méndez S. et al; EuroFlow PID group. Age-associated distribution of normal B-cell and plasma cell subsets in peripheral blood. J Allergy Clin Immunol 2018; 141 (06) 2208-2219.e16
- 356 Berrón-Ruíz L, López-Herrera G, Ávalos-Martínez CE. et al. Variations of B cell subpopulations in peripheral blood of healthy Mexican population according to age: relevance for diagnosis of primary immunodeficiencies. Allergol Immunopathol (Madr) 2016; 44 (06) 571-579
- 357 Couvidou A, Angénieux C, Ruch L, Mangin PH, Gachet C, Maître B. Marginal zone B cells are responsible for the production of alloantibodies following platelet transfusion in mice. Blood Adv 2023; 7 (08) 1356-1365
- 358 Davenport P, Sola-Visner M. Platelet transfusions in neonates: beyond hemostasis. Arterioscler Thromb Vasc Biol 2023; 43 (06) 886-888
- 359 Du Pont-Thibodeau G, Tucci M, Robitaille N, Ducruet T, Lacroix J. Platelet transfusions in pediatric intensive care. Pediatr Crit Care Med 2016; 17 (09) e420-e429
- 360 Christensen RD, Bahr TM, Davenport P. et al. Implementing evidence-based restrictive neonatal intensive care unit platelet transfusion guidelines. J Perinatol 2024; 44 (10) 1394-1401
- 361 Sokou R, Gounari EA, Lianou A. et al. Rethinking platelet and plasma transfusion strategies for neonates: evidence, guidelines, and unanswered questions. Semin Thromb Hemost 2025;
- 362 Moore CM, Curley A. Platelet transfusion thresholds in neonatal medicine. Early Hum Dev 2019; 138: 104845
- 363 Ferrer-Marín F, Sola-Visner M. Neonatal platelet physiology and implications for transfusion. Platelets 2022; 33 (01) 14-22
- 364 Margraf A, Nussbaum C, Sperandio M. Ontogeny of platelet function. Blood Adv 2019; 3 (04) 692-703
- 365 Rebulla P, Pupella S, Santodirocco M. et al; Italian Cord Blood Platelet Gel Study Group (see Appendix 1). Multicentre standardisation of a clinical grade procedure for the preparation of allogeneic platelet concentrates from umbilical cord blood. Blood Transfus 2016; 14 (01) 73-79
- 366 Samarkanova D, Rodríguez L, Vives J. et al. Cord blood-derived platelet concentrates as starting material for new therapeutic blood components prepared in a public cord blood bank: from product development to clinical application. Blood Transfus 2020; 18 (03) 208-216
- 367 Cortesi V, Cavallaro G, Raffaeli G. et al. Why might cord blood be a better source of platelets for transfusion to neonates?. Blood Transfus 2024; 22 (04) 292-302
- 368 Bourne JH, Colicchia M, Di Y. et al. Heme induces human and mouse platelet activation through C-type-lectin-like receptor-2. Haematologica 2021; 106 (02) 626-629
- 369 Jones G, Barker A. Reference intervals. Clin Biochem Rev 2008; 29 (Suppl. 01) S93-S97
- 370 Saving KL, Mankin PE, Gorman MJ. Differences in adhesion receptor expression between immature and older platelets and red blood cells of neonates and adults. J Pediatr Hematol Oncol 2002; 24 (02) 120-124
- 371 Peterec SM, Brennan SA, Rinder HM, Wnek JL, Beardsley DS. Reticulated platelet values in normal and thrombocytopenic neonates. J Pediatr 1996; 129 (02) 269-274
- 372 Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 2012; 11 (08) 633-652
- 373 Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res 2015; 8: 15-27
- 374 Coll RC, Robertson AA, Chae JJ. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 2015; 21 (03) 248-255
- 375 Dempsey C, Rubio Araiz A, Bryson KJ. et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav Immun 2017; 61: 306-316
- 376 Ismael S, Nasoohi S, Ishrat T. MCC950, the selective inhibitor of nucleotide oligomerization domain-like receptor protein-3 inflammasome, protects mice against traumatic brain injury. J Neurotrauma 2018; 35 (11) 1294-1303
- 377 van Hout GP, Bosch L, Ellenbroek GH. et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J 2017; 38 (11) 828-836
- 378 Zhai Y, Meng X, Ye T, Xie W, Sun G, Sun X. Inhibiting the NLRP3 inflammasome activation with MCC950 ameliorates diabetic encephalopathy in db/db mice. Molecules 2018; 23 (03) 522
- 379 Mridha AR, Wree A, Robertson AAB. et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol 2017; 66 (05) 1037-1046
- 380 Perera AP, Fernando R, Shinde T. et al. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Sci Rep 2018; 8 (01) 8618
- 381 Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov 2018; 17 (08) 588-606
- 382 Jiang H, He H, Chen Y. et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med 2017; 214 (11) 3219-3238
- 383 Darakhshan S, Pour AB. Tranilast: a review of its therapeutic applications. Pharmacol Res 2015; 91: 15-28
- 384 Kudelova J, Fleischmannova J, Adamova E, Matalova E. Pharmacological caspase inhibitors: research towards therapeutic perspectives. J Physiol Pharmacol 2015; 66 (04) 473-482
- 385 Arenson EB, Epstein MB, Seeger RC. Monocyte subsets in neonates and children. Pediatrics 1979; 64 (5 Pt 2, suppl): 740-744
- 386 Zhang Y, Jia C, Guo M. et al. Platelet-monocyte aggregate instigates inflammation and vasculopathy in Kawasaki disease. Adv Sci (Weinh) 2025; 12 (05) e2406282
- 387 Czapiga M, Kirk AD, Lekstrom-Himes J. Platelets deliver costimulatory signals to antigen-presenting cells: a potential bridge between injury and immune activation. Exp Hematol 2004; 32 (02) 135-139
- 388 Skrzeczyñska J, Kobylarz K, Hartwich Z, Zembala M, Pryjma J. CD14+CD16+ monocytes in the course of sepsis in neonates and small children: monitoring and functional studies. Scand J Immunol 2002; 55 (06) 629-638
- 389 Mahdi M, Maródi L. Monocytes in neonatal immunity. Neoreviews 2010; 11 (10) e558-e565
- 390 Sordi MB, Panahipour L, Kargarpour Z, Gruber R. Platelet-rich fibrin reduces IL-1β release from macrophages undergoing pyroptosis. Int J Mol Sci 2022; 23 (15) 8306
- 391 Carestia A, Mena HA, Olexen CM. et al. Platelets promote macrophage polarization toward pro-inflammatory phenotype and increase survival of septic mice. Cell Rep 2019; 28 (04) 896-908.e5
- 392 Stebegg M, Kumar SD, Silva-Cayetano A, Fonseca VR, Linterman MA, Graca L. Regulation of the germinal center response. Front Immunol 2018; 9: 2469
- 393 Nishio H, Saita Y, Kobayashi Y. et al. Platelet-rich plasma promotes recruitment of macrophages in the process of tendon healing. Regen Ther 2020; 14: 262-270
- 394 Shakoory B, Carcillo JA, Chatham WW. et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III trial. Crit Care Med 2016; 44 (02) 275-281
- 395 Baumgarth N. A two-phase model of B-cell activation. Immunol Rev 2000; 176: 171-180
- 396 Qian J, Wang X, Su G. et al. Platelet-rich plasma-derived exosomes attenuate intervertebral disc degeneration by promoting NLRP3 autophagic degradation in macrophages. Int Immunopharmacol 2022; 110: 108962
- 397 Gockel LM, Nekipelov K, Ferro V, Bendas G, Schlesinger M. Tumour cell-activated platelets modulate the immunological activity of CD4+, CD8+, and NK cells, which is efficiently antagonized by heparin. Cancer Immunol Immunother 2022; 71 (10) 2523-2533
- 398 Nording H, Sauter M, Lin C. et al. Activated platelets upregulate β2 integrin Mac-1 (CD11b/CD18) on dendritic cells, which mediates heterotypic cell-cell interaction. J Immunol 2022; 208 (07) 1729-1741
- 399 Martinson J, Bae J, Klingemann HG, Tam Y. Activated platelets rapidly up-regulate CD40L expression and can effectively mature and activate autologous ex vivo differentiated DC. Cytotherapy 2004; 6 (05) 487-497
- 400 Duffau P, Seneschal J, Nicco C. et al. Platelet CD154 potentiates interferon-alpha secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci Transl Med 2010; 2 (47) 47ra63