Subscribe to RSS
DOI: 10.1055/a-2706-7513
Moutan Cortex: A Review of Origins, Phytochemical Characterization Strategies, and Anti-fibrosis-related Pharmacological Mechanisms and Applications
Authors
Abstract
Traditional medicine has long acknowledged the therapeutic effects of Moutan cortex (MC), derived from the dried root bark of the tree peony. In recent times, scientific investigations have shed light on its bioactive components and the mechanisms underlying its health-promoting effects. Here, we review the origin of MC, encompassing its worldwide resource distribution, plant morphological characteristics, and medicinal values. Additionally, a multi-dimensional analysis is carried out on the present research strategies concerning the components of MC, aiming to provide insights into the identification of the active components in MC. Simultaneously, this article focuses on the anti-fibrotic pharmacological mechanisms of the two crucial active components, paeonol and paeoniflorin, derived from MC. We comprehensively summarize the multiple mechanisms and pathways through which these components exhibit anti-fibrotic actions within specific pathological sites. Moreover, it reviews the advancements in patents and clinical research associated with paeonol and paeoniflorin, emphasizing their substantial potential for translational applications. Elucidating the key active components derived from MC and their pharmacological mechanisms holds critical scientific and practical value across multiple fields.
Keywords
Moutan cortex - Paeoniaceae - Paeonia x suffruticosa Andrews - paeonol - paeoniflorin - anti-fibrotic - applicationPublication History
Received: 25 February 2025
Accepted: 13 October 2025
Accepted Manuscript online:
13 October 2025
Article published online:
10 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Zhou SL, Zou XH, Zhou ZQ, Liu J, Xu C, Yu J, Wang Q, Zhang DM, Wang XQ, Ge S, Sang T, Pan KY, Hong DY. Multiple species of wild tree peonies gave rise to the ‘king of flowers’, Paeonia suffruticosa Andrews. Proc R Soc B 2014; 281: 20141687
- 2 Yang Y, Sun M, Li S, Chen Q, Teixeira da Silva JA, Wang A, Yu X, Wang L. Germplasm resources and genetic breeding of Paeonia: A systematic review. Hortic Res 2020; 7: 107
- 3 Ye Q, Zhang Y, Yan D, Sun Y, Li M, Cao H, Wang S, Meng J. Integrating pharmacokinetics and network analysis to investigate the mechanism of Moutan Cortex in blood-heat and blood stasis syndrome. Chin Med 2022; 17: 107
- 4 Huang Y, Chen Q, Pan W, Zhang Y, Li J, Xue X, Lei X, Wang S, Meng J. Moutan cortex exerts blood-activating and anti-inflammatory effects by regulating coagulation-inflammation cascades pathway in cells, rats and zebrafish. J Ethnopharmacol 2024; 320: 117398
- 5 Zang Z, Wan F, Jia H, Ma G, Xu Y, Zhao Q, Wu B, Lu H, Huang X. Developing effective radio frequency vacuum drying processes for Moutan Cortex: Effect on moisture migration, drying kinetics, physicochemical quality, and microstructure. Foods 2024; 13: 2294
- 6 Yu W, Ilyas I, Aktar N, Xu S. A review on therapeutical potential of paeonol in atherosclerosis. Front Pharmacol 2022; 13: 950337
- 7 Xin Q, Yuan R, Shi W, Zhu Z, Wang Y, Cong W. A review for the anti-inflammatory effects of paeoniflorin in inflammatory disorders. Life Sci 2019; 237: 116925
- 8 Wang Z, He C, Peng Y, Chen F, Xiao P. Origins, phytochemistry, pharmacology, analytical methods and safety of Cortex Moutan (Paeonia suffruticosa Andrew): A systematic review. Molecules 2017; 22: 946
- 9 Patentstar. Accessed February 7, 2025 at: https://www.patentstar.com.cn
- 10 Pharmacodia. Accessed February 7, 2025 at: https://data.pharmacodia.com
- 11 Global Biodiversity Information Facility (GBIF). Paeonia x suffruticosa Andrews. (2023) GBIF Backbone Taxonomy. Accessed January 24, 2025 at: https://www.gbif.org Checklist dataset 10.15468/39omei
- 12 Hong DY. Peonies of the World: Polymorphism and Diversity. London: Royal Botanical Gardens, Kew; 2011
- 13 Xiong YK, Yan ZY. Pharmaceutical Bontany. Beijing, China: The Peopleʼs Health Press; 2016: 258-259
- 14 Li SZ. Chinese Materia Medica. Fuzhou, China: Fujian Science and Technology Press; 2020: 112
- 15 Liu J, Li X, Bai H, Yang X, Mu J, Yan R, Wang S. Traditional uses, phytochemistry, pharmacology, and pharmacokinetics of the root bark of Paeonia x suffruticosa andrews: A comprehensive review. J Ethnopharmacol 2023; 308: 116279
- 16 Xue X, Liu G, Tang Q, Shi H, Wu D, Jin C, Zhao H, Wei Y, Zhang Y. Multi-elements characteristic and potential risk of heavy metals in MOUTAN CORTEX from Anhui Province, China. Int J Environ Sci Technol (Tehran) 2023; 20: 7829-7842
- 17 Wu P, Sun XY, Sun FY, Huang ZJ, Yu ZY, Cao Y. Shennongʼs Herbal Classic. China: Guangxi Science and Technology Press; 2016: 90
- 18 Commission NP. Pharmacopoeia of the Peopleʼs Republic of China. Beijing, China: China Medical Science and Technology Press; 2022
- 19 Ekiert H, Klimek-Szczykutowicz M, Szopa A. Paeonia x suffruticosa (Moutan Peony)–A review of the chemical composition, traditional and professional use in medicine, position in cosmetics industries, and biotechnological studies. Plants 2022; 11: 3379
- 20 Kim HJ, Kim DH, Park W. Moutan cortex extract modulates macrophage activation via lipopolysaccharide-induced calcium signaling and ER stress-CHOP pathway. Int J Mol Sci 2023; 24: 2062
- 21 Bai M, Liu H, Wang S, Shu Q, Xu K, Zhou J, Xiong X, Huang R, Deng J, Yin Y, Liu Z. Dietary moutan cortex radicis improves serum antioxidant capacity and intestinal immunity and alters colonic microbiota in weaned piglets. Front Nutr 2021; 8: 679129
- 22 Li SG, Yang R, Lu MM, Wang SM, Meng J. A new isoflavone from processed root barks of Paeonia suffruticosa and their procoagulant activity. Nat Prod Res 2024; 5: 1-7
- 23 Li XY, Xu JD, Zhou SS, Kong M, Xu YY, Zou YT, Tang Y, Zhou L, Xu MZ, Xu J, Li SL. Time segment scanning-based quasi-multiple reaction monitoring mode by ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry for quantitative determination of herbal medicines: Moutan Cortex, a case study. J Chromatogr A 2018; 1581 – 1582: 33-42
- 24 Zhao Y, Wang X, Han X, Ren A, Huang X, Fang S, Chen H, Zhang L. Inhibitory activity against rhizoctonia solani and chemical composition of extract from Moutan Cortex. Chem Biodivers 2024; 21: e202400337
- 25 Lian Y, Zhu M, Chen J, Yang B, Lv Q, Wang L, Guo S, Tan X, Li C, Bu W, Ding W, Jia X, Feng L. Characterization of a novel polysaccharide from Moutan Cortex and its ameliorative effect on AGEs-induced diabetic nephropathy. Int J Biol Macromol 2021; 176: 589-600
- 26 Zhang Y, Wu X, Wang X, Zeng Y, Liao Y, Zhang R, Zhai F, Zeng Z. Grey relational analysis combined with network pharmacology to identify antioxidant components and uncover its mechanism from Moutan Cortex. Front Pharmacol 2021; 12: 748501
- 27 Wang R, Wang X, Xia M, Yang L, Cheng W, Song Q. Combining network pharmacology with chromatographic fingerprinting and multicomponent quantitative analysis for the quality evaluation of Moutan Cortex. Biomed Chromatogr 2022; 36: e5434
- 28 Qiu H, Zhang L, Zhu M, Zhang M, Chen J, Feng L, Jia X, Jacob JA. Capture of anti-coagulant active ingredients from Moutan Cortex by platelet immobilized chromatography and evaluation of anticoagulant activity in rats. Biomed Pharmacother 2017; 95: 235-244
- 29 Lu Y, Deng Y, Liu W, Jiang M, Bai G. Searching for calcium antagonists for hypertension disease therapy from Moutan Cortex, using bioactivity integrated UHPLC-QTOF-MS. Phytochem Anal 2019; 30: 456-463
- 30 Chen M, Wang L, Xing S, Yang Y, Rong R. Rapid screening of neuraminidase inhibitors with the benzoic acid skeleton from Paeonia suffruticosa Andrews by solid-phase extraction with an enzyme activity switch combined with mass spectrometry analysis. J Chromatogr A 2022; 1676: 463213
- 31 Zou C, Chen Q, Li J, Lin X, Xue X, Cai X, Chen Y, Sun Y, Wang S, Zhang Y, Meng J. Identification of potential anti-inflammatory components in Moutan Cortex by bio-affinity ultrafiltration coupled with ultra-performance liquid chromatography mass spectrometry. Front Pharmacol 2024; 15: 1358640
- 32 Yang S, Liu X, He J, Liu M. Insight into seasonal change of phytochemicals, antioxidant, and anti-aging activities of root bark of Paeonia suffruticosa (Cortex Moutan) combined with multivariate statistical analysis. Molecules 2021; 26: 6102
- 33 Xiao C, Wu M, Chen Y, Zhang Y, Zhao X, Zheng X. Revealing metabolomic variations in Cortex Moutan from different root parts using HPLC–MS method. Phytochem Anal 2014; 26: 86-93
- 34 Li B, Ge J, Liu W, Hu D, Li P. Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging. New Phytol 2021; 231: 892-902
- 35 Cao Y, Yang X, Shi P, Niu G, Zhang S, Gu Z, Guo Q. Tissue-specific chemical expression and quantitative analysis of bioactive components of Moutan Cortex by laser-microdissection combined with UPLC-Q-Orbitrap-MS technique. J Pharm Biomed Anal 2025; 253: 116537
- 36 Zhan ZL, Deng AP, Kang LP, Tang JF, Nan TG, Chen T, He YL, Guo LP, Huang LQ. Chemical profiling in Moutan Cortex after sulfuring and desulfuring processes reveals further insights into the quality control of TCMs by nontargeted metabolomic analysis. J Pharm Biomed Anal 2018; 156: 340-348
- 37 Meng L, Chen Y, Zheng Z, Wang L, Xu Y, Li X, Xiao Z, Tang Z, Wang Z. Ultrasound-assisted extraction of paeonol from Moutan Cortex: Purification and component identification of extract. Molecules 2024; 29: 622
- 38 Zhou S, Lin H, Meng J. Discrimination and chemical composition quantitative model of Raw Moutan Cortex and Moutan Cortex Carbon based on electronic nose and machine learning. Math Biosci Eng 2022; 19: 9079-9097
- 39 Wang Y, Wang Y. Analysis of the development course of traditional Chinese medicine standardization and recommendations on future work. Guid Stand Chin Med 2023; 1: 1-8
- 40 Zia A, Husnain M, Buck S, Richetti J, Hulm E, Ral JP, Rolland V, Sirault X. Unlocking chickpea flour potential: AI-powered prediction for quality assessment and compositional characterisation. Curr Res Food Sci 2025; 10: 101030
- 41 Gao S, Zhang H, Yang Z, Wu R, Chen M, Zhai D, Yang Y, Qin Y, Tao H, Li P. A dual-branch CNN-encoder model for rapid geographic traceability of Astragalus using near-infrared spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2025; 346: 126851
- 42 Cheng P, Xue X, Su J, Lu M, Wang S, Meng J. 1H NMR-based metabonomic revealed protective effect of Moutan Cortex charcoal on blood-heat and hemorrhage rats. J Pharm Biomed Anal 2019; 169: 151-158
- 43 Shang J, Liu J, He M, Shang E, Zhang L, Shan M, Yao W, Yu B, Yao Y, Ding A. UHPLC/Q-TOF MS-based plasma metabolic profiling analysis of the bleeding mechanism in a rat model of yeast and ethanol-induced blood heat and hemorrhage syndrome. J Pharm Biomed Anal 2014; 92: 26-34
- 44 Ye Q, Cheng P, Yan D, Sun Y, Zhang Y, Cao H, Wang S, Meng J. Nine absorbed components pharmacokinetic of raw and processed Moutan Cortex in normal and blood-heat and hemorrhage syndrome model rats. Biomed Chromatogr 2020; 34: e4963
- 45 Ding LQ, Qiu TY, Liu ZX, Chen LX, Oppong MB, Zhang DQ, Zhang BL, Bai G, Qiu F. Systematic characterization of the metabolites of paeonol in rats using ultra performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry with an integrative strategy. J Chromatogr B 2017; 1065 – 1066: 70-78
- 46 Wang J, Wu G, Chu H, Wu Z, Sun J. Paeonol derivatives and pharmacological activities: A review of recent progress. Mini Rev Med Chem 2020; 20: 466-482
- 47 Zhang L, Li DC, Liu LF. Paeonol: pharmacological effects and mechanisms of action. Int Immunopharmacol 2019; 72: 413-421
- 48 Zhou YX, Gong XH, Zhang H, Peng C. A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects. Biomed Pharmacother 2020; 130: 110505
- 49 Bei Y, Lu HS, Zhong J. Editorial: Cardiovascular fibrosis and related diseases: Basic and clinical research advances. Front Cardiovasc Med 2022; 9: 879780
- 50 Cabrera-Fuentes HA, Barreto G, Al-Suhaimi EA, Liehn EA. Fibroblast plasticity in pulmonary and cardiovascular fibrosis: Mechanistic insights and emerging therapeutic targets. Arch Med Res 2025; 56: 103173
- 51 Czubryt MP. Cardiac fibroblast to myofibroblast phenotype conversion-an unexploited therapeutic target. J Cardiovasc Dev Dis 2019; 6: 28
- 52 Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 2014; 71: 549-574
- 53 Pinar AA, Scott TE, Huuskes BM, Tapia Cáceres FE, Kemp-Harper BK, Samuel CS. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis. Pharmacol Ther 2020; 209: 107511
- 54 Shi X, Huang H, Zhou M, Liu Y, Wu H, Dai M. Paeonol attenuated vascular fibrosis through regulating Treg/Th17 balance in a gut microbiota-dependent manner. Frontiers in Pharmacology 2021; 12: 765482
- 55 Thabassum Akhtar Iqbal S, Tirupathi Pichiah PB, Raja S, Arunachalam S. Paeonol reverses adriamycin induced cardiac pathological remodeling through Notch1 signaling reactivation in H9c2 cells and adult Zebrafish heart. Chem Res Toxicol 2019; 33: 312-323
- 56 Chen X, Zhang Z, Zhang X, Jia Z, Liu J, Chen X, Xu A, Liang X, Li G. Paeonol attenuates heart failure induced by transverse aortic constriction via ERK1/2 signalling. Pharm Biol 2022; 60: 562-569
- 57 Zhou H, Yang HX, Yuan Y, Deng W, Zhang JY, Bian ZY, Zong J, Dai J, Tang QZ. Paeoniflorin attenuates pressure overload-induced cardiac remodeling via inhibition of TGFβ/Smads and NF-κB pathways. J Mol Histol 2013; 44: 357-367
- 58 Liu X, Chen K, Zhuang Y, Huang Y, Sui Y, Zhang Y, Lv L, Zhang G. Paeoniflorin improves pressure overload-induced cardiac remodeling by modulating the MAPK signaling pathway in spontaneously hypertensive rats. Biomed Pharmacother 2019; 111: 695-704
- 59 Fang X, Ji Y, Li S, Wang L, He B, Li B, Liang B, Yin H, Chen H, Dingda D, Wu B, Gao F. Paeoniflorin attenuates cuproptosis and ameliorates left ventricular remodeling after AMI in hypobaric hypoxia environments. J Nat Med 2024; 78: 664-676
- 60 Ji Y, Ning Z. Paeoniflorin inhibits atrial fibrosis and atrial fibrillation in angiotensin II-infused mice through the PI3K-akt pathway. Dose-Response 2024; 22: 15593258241277919
- 61 Liu M, Feng J, Du Q, Ai J, Lv Z. Paeoniflorin attenuates myocardial fibrosis in isoprenaline-induced chronic heart failure rats via inhibiting P38 MAPK pathway. Curr Med Sci 2020; 40: 307-312
- 62 Aggarwal K, Arora S, Nagpal K. Pulmonary fibrosis: Unveiling the Pathogenesis, exploring therapeutic targets, and advancements in drug delivery strategies. AAPS PharmSciTech 2023; 24: 152
- 63 Nwafor EO, Lu P, Liu Y, Peng H, Qin H, Zhang K, Ma Z, Xing B, Zhang Y, Li J, Liu Z. Active components from traditional herbal medicine for the potential therapeutics of idiopathic pulmonary fibrosis: A systemic review. Am J Chin Med 2021; 49: 1093-1114
- 64 Wang L, Zhu T, Feng D, Li R, Zhang C. Polyphenols from Chinese herbal medicine: Molecular mechanisms and therapeutic targets in pulmonary fibrosis. Am J Chin Med 2022; 50: 1063-1094
- 65 Liu MH, Lin AH, Ko HK, Perng DW, Lee TS, Kou YR. Prevention of bleomycin-induced pulmonary inflammation and fibrosis in mice by paeonol. Front Physiol 2017; 8: 193
- 66 Chen YC, Chen JH, Tsai CF, Wu CY, Chang CN, Wu CT, Yeh WL. Protective effects of paeonol against cognitive impairment in lung diseases. J Pharmacol Sci 2024; 155: 101-112
- 67 Yan M, Wang Q, Yang H, Liu D, Liang W, Chen H. The paeonol of total glucosides of white peony regulates the differentiation of CD4+Treg cells through the EP300/Foxp3 axis to relieve pulmonary fibrosis in mice. Cell Biochem Biophys 2025; 83: 3959-3970
- 68 Ji Y, Dou YN, Zhao QW, Zhang JZ, Yang Y, Wang T, Xia YF, Dai Y, Wei ZF. Paeoniflorin suppresses TGF-β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway. Acta Pharmacol Sin 2016; 37: 794-804
- 69 Yu W, Zeng M, Xu P, Liu J, Wang H. Effect of paeoniflorin on acute lung injury induced by influenza A virus in mice. Evidences of its mechanism of action. Phytomedicine 2021; 92: 153724
- 70 Li T, Mao N, Xie Z, Wang J, Jin F, Li Y, Liu S, Cai W, Gao X, Wei Z, Yang F, Xu H, Liu H, Zhang H, Xu D. Paeoniflorin mitigates MMP-12 inflammation in silicosis via Yang-Yin-Qing-Fei decoction in murine models. Phytomedicine 2024; 129: 155616
- 71 Lin CY, Adhikary P, Cheng K. Cellular protein markers, therapeutics, and drug delivery strategies in the treatment of diabetes-associated liver fibrosis. Adv Drug Deliv Rev 2021; 174: 127-139
- 72 Lu ZN, Niu WX, Zhang N, Ge MX, Bao YY, Ren Y, Guo XL, He HW. Pantoprazole ameliorates liver fibrosis and suppresses hepatic stellate cell activation in bile duct ligation rats by promoting YAP degradation. Acta Pharmacol Sin 2021; 42: 1808-1820
- 73 Villesen IF, Daniels SJ, Leeming DJ, Karsdal MA, Nielsen MJ. Review article: the signalling and functional role of the extracellular matrix in the development of liver fibrosis. Aliment Pharmacol Ther 2020; 52: 85-97
- 74 Wang K, Lin B, Brems JJ, Gamelli RL. Hepatic apoptosis can modulate liver fibrosis through TIMP1 pathway. Apoptosis 2013; 18: 566-577
- 75 Yao QY, Xu BL, Wang JY, Liu HC, Zhang SC, Tu CT. Inhibition by curcumin of multiple sites of the transforming growth factor-beta1 signalling pathway ameliorates the progression of liver fibrosis induced by carbon tetrachloride in rats. BMC Complement Altern Med 2012; 12: 156
- 76 Zhao P, Sun T, Lyu C, Liang K, Niu Y, Zhang Y, Cao C, Xiang C, Du Y. Scar-degrading endothelial cells as a treatment for advanced liver fibrosis. Adv Sci (Weinh) 2023; 10: e2203315
- 77 Kershenobich Stalnikowitz D, Weissbrod AB. Liver fibrosis and inflammation. A review. Ann Hepatol 2003; 2: 159-163
- 78 Jeong HJ, Koo S, Kang YH, Kim TW, Kim HK, Park YJ. Hepatoprotective effects of paeonol by suppressing hepatic stellate cell activation via inhibition of SMAD2/3 and STAT3 pathways. Food Sci Biotechnol 2023; 33: 1939-1946
- 79 Wu S, Liu L, Yang S, Kuang G, Yin X, Wang Y, Xu F, Xiong L, Zhang M, Wan J, Gong X. Paeonol alleviates CCl4-induced liver fibrosis through suppression of hepatic stellate cells activation via inhibiting the TGF-β/Smad3 signaling. Immunopharmacol Immunotoxicol 2019; 41: 438-445
- 80 Kong D, Zhang F, Wei D, Zhu X, Zhang X, Chen L, Lu Y, Zheng S. Paeonol inhibits hepatic fibrogenesis via disrupting nuclear factor-κB pathway in activated stellate cells: In vivo and in vitro studies. J Gastroenterol Hepatol 2013; 28: 1223-1233
- 81 Morsy MA, Abdel-Latif R, Hafez SMNA, Kandeel M, Abdel-Gaber SA. Paeonol protects against methotrexate hepatotoxicity by repressing oxidative stress, inflammation, and apoptosis–The role of drug efflux transporters. Pharmaceuticals 2022; 15: 1296
- 82 Kong D, Chen L, Huang W, Zhang Z, Wang L, Zhang F, Zheng S. Combined therapy with ligustrazine and paeonol mitigates hepatic fibrosis through destroying mitochondrial integrity of stellate cell. Am J Transl Res 2020; 12: 1255-1266
- 83 Liao YJ, Wang YH, Liu CL, Fang CC, Hsu MH, Suk FM. 4-methoxy sulfonyl paeonol inhibits hepatic stellate cell activation and liver fibrosis by blocking the TGF-β1/Smad, PDGF-BB/MAPK and akt signaling pathways. Applied Sciences 2020; 10: 5941
- 84 Chen Z, Zhu Y, Zhao Y, Ma X, Niu M, Wang J, Su H, Wang R, Li J, Liu L, Wei Z, Zhao Q, Chen H, Xiao X. Serum metabolomic profiling in a rat model reveals protective function of Paeoniflorin against ANIT induced cholestasis. Phytother Res 2016; 30: 654-662
- 85 Chen Z, Ma X, Zhu Y, Zhao Y, Wang J, Li R, Chen C, Wei S, Jiao W, Zhang Y, Li J, Wang L, Wang R, Liu H, Shen H, Xiao X. Paeoniflorin ameliorates ANIT-induced cholestasis by activating Nrf2 through an PI3K/Akt-dependent pathway in rats. Phytother Res 2015; 29: 1768-1775
- 86 Zhao Y, Ma X, Wang J, Zhu Y, Li R, Wang J, He X, Shan L, Wang R, Wang L, Li Y, Xiao X. Paeoniflorin alleviates liver fibrosis by inhibiting HIF-1α through mTOR-dependent pathway. Fitoterapia 2014; 99: 318-327
- 87 Zhang Y, Zhang S, Luo X, Zhao H, Xiang X. Paeoniflorin mitigates PBC-induced liver fibrosis by repressing NLRP3 formation. Acta Cir Bras 2021; 36: e361106
- 88 Chen X, Liu C, Lu Y, Yang Z, Lv Z, Xu Q, Pan Q, Lu L. Paeoniflorin regulates macrophage activation in dimethylnitrosamine-induced liver fibrosis in rats. BMC Complement Altern Med 2012; 12: 254
- 89 Yu W, Zeng M, Xu P, Liu J, Wang H. Effect of paeoniflorin on acute lung injury induced by influenza A virus in mice. Evidences of its mechanism of action. Phytomedicine 2021; 92: 153724
- 90 Wang T, Zhou X, Kuang G, Jiang R, Guo X, Wu S, Wan J, Yin L. Paeoniflorin modulates oxidative stress, inflammation and hepatic stellate cells activation to alleviate CCl4-induced hepatic fibrosis by upregulation of heme oxygenase-1 in mice. J Pharm Pharmacol 2021; 73: 338-346
- 91 Meng L, Lv H, Kong Q, Li S, Jiang N, Yu C, Duan Z, Xiao Y, Liu Y. The combination of paeoniflorin and metformin synergistically inhibits the progression of liver fibrosis in mice. Eur J Pharmacol 2024; 981: 176917
- 92 Hu Z, Qin F, Gao S, Zhen Y, Huang D, Dong L. Paeoniflorin exerts protective effect on radiation-induced hepatic fibrosis in rats via TGF-β1/Smads signaling pathway. Am J Transl Res 2018; 10: 1012-1021
- 93 Abd El-Aal NF, Abdelbary EH. Paeoniflorin in experimental BALB/c mansoniasis: A novel anti-angiogenic therapy. Exp Parasitol 2019; 197: 85-92
- 94 Xiao H, Wei H, Yang GB, Peng HL, Zhang C. Effects of paeoniflorin on CTGF, PDGF and TNF-α in mice with hepatic fibrosis caused by schistosomiasis japonica. Chin J Schisto Control 2011; 23: 288-291 349
- 95 Chu D, Du M, Hu X, Wu Q, Shen J. Paeoniflorin attenuates schistosomiasis japonica-associated liver fibrosis through inhibiting alternative activation of macrophages. Parasitology 2011; 138: 1259-1271
- 96 Li X, Shen J, Zhong Z, Peng JUN, Wen H, Li J, Luo Q, Wei WEI. Paeoniflorin ameliorates schistosomiasis liver fibrosis through regulating IL-13 and its signalling molecules in mice. Parasitology 2010; 137: 1213-1225
- 97 Chu D, Luo Q, Li C, Gao Y, Yu L, Wei W, Wu Q, Shen J. Paeoniflorin inhibits TGF-β1-mediated collagen production by Schistosoma japonicumsoluble egg antigenin vitro. Parasitology 2007; 134: 1611-1621
- 98 Li X, Shen J, Zhong Z, Wen H, Luo Q, Wei W. Paeoniflorin: A monomer from traditional Chinese medical herb ameliorates Schistosoma japonicum egg-induced hepatic fibrosis in mice. J Parasitol 2009; 95: 1520-1524
- 99 Seccia TM, Caroccia B, Calò LA. Hypertensive nephropathy. Moving from classic to emerging pathogenetic mechanisms. J Hypertens 2017; 35: 205-212
- 100 Sureshbabu A, Muhsin SA, Choi ME. TGF-β signaling in the kidney: Profibrotic and protective effects. Am J Physiol Renal Physiol 2016; 310: F596-F606
- 101 Toda N, Mukoyama M, Yanagita M, Yokoi H. CTGF in kidney fibrosis and glomerulonephritis. Inflamm Regen 2018; 38: 14
- 102 Ziyadeh FN. The extracellular matrix in diabetic nephropathy. Am J Kidney Dis 1993; 22: 736-744
- 103 Zhang L, Chen Z, Gong W, Zou Y, Xu F, Chen L, Huang H. Paeonol ameliorates diabetic renal fibrosis through promoting the activation of the Nrf2/ARE pathway via up-regulating Sirt1. Front Pharmacol 2018; 9: 512
- 104 Zhou H, Qiu ZZ, Yu ZH, Gao L, He JM, Zhang ZW, Zheng J. Paeonol reverses promoting effect of the HOTAIR/miR-124/Notch1 axis on renal interstitial fibrosis in a rat model. J Cell Physiol 2019; 234: 14351-14363
- 105 Zeng J, Dou Y, Guo J, Wu X, Dai Y. Paeoniflorin of Paeonia lactiflora prevents renal interstitial fibrosis induced by unilateral ureteral obstruction in mice. Phytomedicine 2013; 20: 753-759
- 106 Liang D, Liu L, Qi Y, Nan F, Huang J, Tang S, Tang J, Chen N. Jin-Gui-Shen-Qi Wan alleviates fibrosis in mouse diabetic nephropathy via MHC class II. J Ethnopharmacol 2024; 324: 117745
- 107 Li R, Xia J, Shi C, Zhang K, Qu Y, He G, Fu Z, Deng L, Liu R, Wang X, Cai G, Dong Z, Li P, Chen X, Hong Q. Direct pharmacological targeting of Piezo1 by Paeoniflorin: A novel therapeutic approach for renal fibrosis. J Adv Res 2025; 11: S2090-1232(25)00540-5
- 108 Ho DC, Chen SH, Fang CY, Hsieh CW, Hsieh PL, Liao YW, Yu CC, Tsai LL. Paeonol inhibits profibrotic signaling and HOTAIR expression in fibrotic buccal mucosal fibroblasts. J Formos Med Assoc 2022; 121: 930-935
- 109 Sun T, Xu W, Wang J, Song J, Wang T, Wang S, Liu K, Liu J. Paeonol ameliorates diabetic erectile dysfunction by inhibiting HMGB1/RAGE/NF-kB pathway. Andrology 2022; 11: 344-357
- 110 Tian YQ, Zhang SP, Zhang KL, Cao D, Zheng YJ, Liu P, Zhou HH, Wu YN, Xu QX, Liu XP, Tang XD, Zheng YQ, Wang FY. Paeoniflorin Ameliorates Colonic Fibrosis in Rats with Postinfectious Irritable Bowel Syndrome by Inhibiting the Leptin/LepRb Pathway. Evid Based Complement Alternat Med 2022; 2022: 6010858
- 111 Deng N, Chen X, Xiong C. Semantic Similarity Calculation of TCM Patents in Intelligent Retrieval Based on Deep Learning. International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2019), Yonago, Japan; 2020.
- 112 Jiang S, Luo J, Ruiz-Pava G, Hu J, Magee CL. Deriving design feature vectors for patent images using convolutional neural networks. J Mech Des 2021; 143: 061405
- 113 Qian W, Zhang J, Wang W, Wang T, Liu M, Yang M, Sun Z, Li X, Li Y. Antimicrobial and antibiofilm activities of paeoniflorin against carbapenem-resistant Klebsiella pneumoniae. J Appl Microbiol 2020; 128: 401-413
- 114 Zhao Y, Sun S, Liu J, Zheng M, Liu M, Liu J, Liu H. Investigation of the protective mechanism of paeoniflorin against hyperlipidemia by an integrated metabolomics and gut microbiota strategy. J Nutr Biochem 2025; 137: 109831
- 115 Sun Z, Du J, Hwang E, Yi TH. Paeonol extracted from Paeonia suffruticosa Andr. ameliorated UVB-induced skin photoaging via DLD/Nrf2/ARE and MAPK/AP-1 pathway. Phytother Res 2018; 32: 1741-1749
- 116 Qiu J, Chen M, Liu J, Huang X, Chen J, Zhou L, Ma J, Sextius P, Pena AM, Cai Z, Jeulin S. The skin-depigmenting potential of Paeonia lactiflora root extract and paeoniflorin: In vitro evaluation using reconstructed pigmented human epidermis. Int J Cosmet Sci 2016; 38: 444-451
- 117 Wang Y, Tang Z, Guo X, Zhao Y, Ren S, Zhang Z, Lv H. Hyaluronic acid-cyclodextrin encapsulating paeonol for treatment of atopic dermatitis. Int J Pharm 2022; 623: 121916
- 118 Wu J, Zhu RD, Cao GM, Du JC, Liu X, Diao LZ, Zhang ZY, Hu YS, Liu XH, Shi JB. Discovery of novel paeonol-based derivatives against skin inflammation in vitro and in vivo . J Enzyme Inhib Med Chem 2022; 37: 817-831
- 119 Tu J, Guo Y, Hong W, Fang Y, Han D, Zhang P, Wang X, Korner H, Wei W. The regulatory effects of paeoniflorin and its derivative Paeoniflorin-6′-O-Benzene sulfonate CP-25 on inflammation and immune diseases. Front Pharmacol 2019; 10: 57
- 120 Deng C, Yao N, Wang B, Zhang X. Development of microwave-assisted extraction followed by headspace single-drop microextraction for fast determination of paeonol in traditional Chinese medicines. J Chromatogr A 2006; 1103: 15-21
- 121 Sim HJ, Jeong JS, Kwon HJ, Lee YM, Hong SP. Sensitive high-performance anion-exchange chromatographic determination of paeoniflorin and albiflorin by pulsed amperometric detection after solid-phase extraction. J Chromatogr A 2010; 1217: 5302-5305
- 122 Savla SR, Laddha AP, Kulkarni YA. Pharmacology of apocynin: A natural acetophenone. Drug Metab Rev 2021; 53: 542-562
- 123 Qi JH, Dong FX, Wang XL. Exploring targets and signaling pathways of Paeonol involved in relieving inflammation based on modern technology. Mol Divers 2022; 26: 1731-1742
- 124 Roman-Blas JA, Jimenez SA. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 2006; 14: 839-848
- 125 Cross AL, Hawkes J, Wright HL, Moots RJ, Edwards SW. APPA (apocynin and paeonol) modulates pathological aspects of human neutrophil function, without supressing antimicrobial ability, and inhibits TNFα expression and signalling. Inflammopharmacology 2020; 28: 1223-1235
- 126 Bihlet AR, Byrjalsen I, Andersen JR, Reynolds A, Larkins N, Alexandersen P, Rovsing H, Moots R, Conaghan PG. The efficacy and safety of a fixed-dose combination of apocynin and Paeonol, APPA, in symptomatic knee OA: A double-blind, randomized, placebo-controlled, clinical trial. Osteoarthritis Cartilage 2024; 32: 952-962
- 127 Wang X, Hu DY, Sha O, Wang CL, Zhao HB, Yang JC. Effect of compound paeonol dripping pill on levels of plasma inflammatory mediators in patients with unstable angina. Chin J Integr Med 2008; 28: 395-398
- 128 Yan S, Xindi Z, Hongying Z. Clinical study on Paeonol Ointment combined with tacrolimus in treatment of skin pruritus. Drugs & Clinic 2023; 38: 1438-1441
- 129 Zhou XY, Geng JQ, Wang XY, Gu YA, Zhao DD, Wang S, Dongxue Z. Clinical study on the effect of toothpaste containing Panax Notoginseng extract and Paeonol on alleviating gingival inflammation. Chinese Medical Record 2024; 25: 109-112
- 130 Yu F, Xu N, Zhou Y, Li B, Li M, Wang Q, Yang X, Ge X, Zhang F, Ren X. Anti-inflammatory effect of paeoniflorin combined with baicalin in oral inflammatory diseases. Oral Dis 2019; 25: 1945-1953
- 131 Zhang Z, Zhang Y, Zhao Z, Li P, Chen D, Wang W, Han Y, Zou S, Jin X, Zhao J, Liu H, Wang X, Zhu W. Paeoniflorin drives the immunomodulatory effects of mesenchymal stem cells by regulating Th1/Th2 cytokines in oral lichen planus. Sci Rep 2022; 12: 18678
- 132 Song C, Gao C, Han Y. Clinical observation on the treatment of moderate and advanced cancer pain with paeoniflorin combined with morphine. Pharm Clin Res 2015; 23: 447-449
- 133 Song Z, Chen G, Chen CYC. AI empowering traditional Chinese medicine?. Chem Sci 2024; 15: 16844-16886
- 134 Mitchell DC, Kuljanin M, Li J, Van Vranken JG, Bulloch N, Schweppe DK, Huttlin EL, Gygi SP. A proteome-wide atlas of drug mechanism of action. Nat Biotechnol 2023; 41: 845-857
- 135 Li D, Hu J, Zhang L, Li L, Yin Q, Shi J, Guo H, Zhang Y, Zhuang P. Deep learning and machine intelligence: New computational modeling techniques for discovery of the combination rules and pharmacodynamic characteristics of Traditional Chinese Medicine. Eur J Pharmacol 2022; 933: 175260
