Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000160.xml
neuroreha 2025; 17(04): 161-168
DOI: 10.1055/a-2705-8258
DOI: 10.1055/a-2705-8258
Schwerpunkt
Repräsentation der Bewegung der oberen Extremität im Gehirn
Authors
Wie steuert das menschliche Gehirn gezielte Bewegungen der Arme und Hände? Dieser Beitrag bietet einen fundierten Einblick in die sensomotorischen Netzwerke und erläutert verständlich die Rolle zentraler Hirnregionen, deren Zusammenspiel sowie die Auswirkungen von Training auf die motorische Leistungsfähigkeit. Erfahren Sie, weshalb jede Bewegung das Ergebnis komplexer neuronaler Prozesse ist – von alltäglichen Handlungen bis hin zu hochspezialisierten Fertigkeiten.
Publication History
Article published online:
08 December 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Lotze M. Zerebrale Repräsentation von Bewegung. neuroreha 2011; 1: 10-17
- 2 Lotze M. Was gibt‘s Neues zum Thema Händigkeit und Asymmetrie im Gehirn? neuroreha. 2025 17. 169-173
- 3 Mattay VS, Callicott JH, Bertolino A. et al. Hemispheric control of motor function: A whole brain echo planar fMRI study. Psychiatry Res 1998; 83: 7-22
- 4 Lotze M, Halsband H. Motor Imagery. J Physiol Paris 2006; 99: 386-395
- 5 Lewandowsky M. Die zentralen Bewegungssteuerungen. In: Lewandowsky M, Hrsg. Handbuch der Neurologie 1 (2). Berlin: Julius Springer; 1910: 685-772
- 6 Lewis PA, Wing AM, Pope PA. et al. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation and continuation phases of paced finger tapping. Neuropsychologia 2004; 42: 1301-1312
- 7 Schubotz RI, von Cramon YD. Dynamic patterns make the premotor cortex interested in objects: Influence of stimulus and task revealed by fMRI. Cognitive Brain Research 2002; 14: 357-369
- 8 Binkofski F, Buccino G. The role of ventral premotor cortex in action execution and action understanding. J Physiol Paris 2006; 99: 396-405
- 9 Luria AR. Higher cortical functions in man. London: Tavistock Publications; 1966
- 10 Debaere F, Swinnen SP, Béatse E. et al. Brain areas involved in interlimb coordination: A distributed network. NeuroImage 2001; 14: 947-958
- 11 Halsband U, Ito N, Tanji J. et al. The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 1993; 116: 243-266
- 12 Stephan KM, Fink GR, Passingham RE. et al. Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J Neurophysiol 1995; 73: 373-386
- 13 Muakkassa K, Strick PL. Frontal lobe inputs to primate motor cortex: Evidence for four somatotopically organized „premotor“ areas. Brain Res 1979; 177: 176-182
- 14 Halsband U, Matsuzaka Y, Tanji J. Neuronal activity in the primate supplementary, pre-supplementary and premotor cortex during externally and internally instructed sequential movements. Neurosci Res 1994; 20: 149-155
- 15 Cavina-Pratesi C, Monaco S, Fattori P. et al. Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. J Neurosci 2010; 30: 10306-10323
- 16 Grèzes J, Armony JL, Rowe J. et al. Activations related to „mirror“ and „canonical“ neurones in the human brain: An fMRI study. Neuroimage 2003; 18: 928-937
- 17 Buccino G, Vogt S, Ritzl A. et al. Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron 2004; 42: 323-334
- 18 Halsband U, Krause BJ, Schmidt D. et al. Encoding and retrieval in declarative learning: A positron emission tomography study. Behav Brain Res 1998; 97: 69-78
- 19 Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends Neurosci 1990; 13: 266-271
- 20 Jueptner M, Weiller C. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain 1998; 121: 1437-1449
- 21 Hoshi E, Tremblay L, Féger J. et al. The cerebellum communicates with the basal ganglia. Nat Neurosci 2005; 8: 1491-1493
- 22 Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci 1992; 15: 403-442
- 23 Grodd W, Hülsmann E, Lotze M. et al. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp 2001; 13: 55-73
- 24 Lotze M, Scheler G, Tan HRM. et al. The musician’s brain: Functional imaging of amateurs and professionals during performance and imagery. NeuroImage 2003; 20: 1817-1829
- 25 Jahn K, Deutschländer A, Stephan T. et al. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 2004; 22: 1722-1731
- 26 Gerloff C, Corwell B, Chen R. et al. The role of the human motor cortex in the control of complex and simple finger movement sequences. Brain 1998; 121: 1695-1709
- 27 Uswatte G, Taub E, Morris D. et al. Contribution of the shaping and restraint components of constraint-induced movement therapy to treatment outcome. Neuro Rehabil 2006; 21: 147-156
- 28 Lotze M, Braun C, Birbaumer N. et al. Motor learning elicited by voluntary drive. Brain 2003; 126: 886-872
- 29 Hebb DO. The organization of behavior: A neuropsychological theory. New York: Wiley; 1949
- 30 Elbert T, Pantev C, Wienbruch C. Increased cortical representation of the fingers of the left hand in string players. Science 1995; 270: 305-307
- 31 Henneken T. Predicting Recovery Potential (PREP). neuroreha 2019; 11: 72-77
- 32 Smith MC, Byblow WD, Barber PA, Stinear CM. Proportional recovery from lower limb motor impairment after stroke. Stroke 2017; 48: 1400-1403