Subscribe to RSS
DOI: 10.1055/a-2698-8545
Unraveling Tumor Heterogeneity in Gynecological Cancer Using a Radiogenomics Approach
Aufklärung der Tumorheterogenität bei gynäkologischen Krebserkrankungen mithilfe eines radiogenomischen AnsatzesAuthors
Abstract
Purpose
Ovarian cancer (OC) and endometrial cancer (EC) are highly heterogeneous gynecological malignancies with distinct molecular subtypes, therapeutic responses, and clinical outcomes. Traditional biopsy-based profiling often fails to capture the spatial and temporal complexity of these tumors. Radiogenomics, integrating imaging features with genomic and molecular data, has emerged as a promising approach to non-invasively analyze tumor heterogeneity. The purpose of this abstract is to critically examine and synthesize existing research on the application of radiogenomics in OC and EC, focusing on its ability to correlate imaging phenotypes with molecular biomarkers. This narrative review aims to demonstrate how radiogenomics can enhance tumor characterization, support biomarker prediction, and inform prognosis and therapeutic decision-making with non-invasive methods.
Materials and Method
This narrative review critically synthesizes current literature on radiogenomics applications in OC and EC. Studies using CT, MRI, and PET imaging were evaluated for their ability to correlate imaging phenotypes with molecular biomarkers, gene expression profiles, and clinical outcomes. The analysis emphasizes the role of radiogenomics in enhancing tumor characterization, predicting biomarker status, forecasting treatment response and prognosis.
Results
Radiogenomics has successfully identified associations between imaging features and key molecular alterations, such as BRCA mutations, homologous recombination deficiency (HRD), and immune-related biomarkers in OC, as well as POLE mutations, microsatellite instability (MSI), and tumor mutational burden (TMB) in EC. Predictive models incorporating radiomic features have demonstrated notable performance in estimating prognosis, treatment response, and recurrence risk across both cancer types.
Conclusion
Radiogenomics has a strong potential to enhance personalized cancer care by analyzing tumor heterogeneity. However, clinical application requires methodological standardization, prospective validation, and integration into precision oncology workflows.
Key Points
-
Radiogenomics enables non-invasive assessment of spatial and molecular heterogeneity in OC and EC.
-
Integration of imaging and genomic data improves prediction of biomarkers, therapy response, and survival.
-
Future clinical applications depend on methodological standardization, prospective validation, and integration into precision oncology workflows.
Citation Format
-
Dolciami M, Celli V, Panico C et al. Unraveling Tumor Heterogeneity in Gynecological Cancer Using a Radiogenomics Approach Rofo 2025; DOI 10.1055/a-2698-8545
Zusammenfassung
Ziel
Ovarialkarzinome (OC) und Endometriumkarzinome (EC) sind beides hochgradig heterogene gynäkologische Malignome mit unterschiedlichen molekularen Subtypen, Therapieansprechen und klinischem Outcome. Die herkömmliche biopsiebasierte Profilierung kann die räumliche und zeitliche Komplexität dieser Tumoren oft nicht erfassen. Die Radiogenomics, die Bildgebungsmerkmale und genomischen und molekularen Daten integriert, hat sich als vielversprechender Ansatz für die nicht-invasive Analyse der Tumorheterogenität herausgestellt. Ziel dieser Zusammenfassung ist es, die bestehende Forschung zur Anwendung der Radiogenomics bei OC und EC kritisch zu untersuchen und zusammenzufassen, wobei der Schwerpunkt auf deren Fähigkeit liegt, Bildgebungsphänotypen mit molekularen Biomarkern zu korrelieren. Diese narrative Übersicht soll aufzeigen, wie Radiogenomics die Charakterisierung von Tumoren verbessern, prognostische Biomarker unterstützen und mit nicht-invasiven Methoden zur Prognose und therapeutischen Entscheidungsfindung beitragen kann.
Material und Methoden
Dieser narrative Review fasst die aktuelle Literatur zu Radiogenomics-Anwendungen bei OC und EC kritisch zusammen. Studien, die CT-, MRT- und PET-Bildgebung verwenden, wurden auf ihre Fähigkeit untersucht, Bildgebungsphänotypen mit molekularen Biomarkern, Genexpressionsprofilen und dem klinischen Outcome zu korrelieren. Die Analyse betont die Rolle der Radiogenomics bei der Verbesserung der Tumorcharakterisierung, der Vorhersage des Biomarkerstatus, sowie der Vorhersage des Therapieansprechens und der Prognose.
Ergebnisse
Radiogenomics konnte erfolgreich Zusammenhänge zwischen Bildgebungsmerkmalen und wesentlichen molekularen Veränderungen identifizieren, wie etwa BRCA-Mutationen, homologe Rekombinationsdefizienz (HRD) und immunologische Biomarker bei OC sowie POLE-Mutationen, Mikrosatelliteninstabilität (MSI) und Tumormutationslast (TMB) bei EC. Prädiktive Modelle, die radiomische Merkmale einbeziehen, haben bei der Einschätzung der Prognose, des Therapieansprechens und des Rezidivrisikos bei beiden Krebsarten eine bemerkenswerte Leistungsfähigkeit gezeigt.
Schlussfolgerung
Radiogenomics hat großes Potenzial, die personalisierte onkologische Behandlung durch die Analyse der Tumorheterogenität zu verbessern. Die klinische Anwendung erfordert jedoch eine methodische Standardisierung, prospektive Validierung und die Integration in die Arbeitsabläufe der Präzisionsonkologie.
Kernaussagen
-
Die Radiogenomik ermöglicht eine nicht-invasive Beurteilung der räumlichen und molekularen Heterogenität bei OC und EC.
-
Die Integration von Bildgebungs- und Genomdaten verbessert die Vorhersage von Biomarkern, Therapieansprechen und Überlebensrate.
-
Zukünftige klinische Anwendungen hängen von der methodischen Standardisierung, prospektiven Validierung und Integration in präzisionsonkologische Arbeitsabläufe ab.
Schlüsselwörter
Ovarialkarzinom - Endometriumkarzinom - Radiogenomik - Tumorheterogenität - TumorhabitatPublication History
Received: 25 June 2025
Accepted after revision: 03 September 2025
Article published online:
05 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Siegel RL, Miller KD, Fuchs HE. et al. Cancer statistics, 2022. CA A Cancer J Clinicians 2022; 72: 7-33
- 2 Ferlay J, Ervik M, Lam F. et al. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer; 2024. Accessed May 26, 2025 at: https://gco.iarc.who.int/today
- 3 Crispin-Ortuzar M, Sala E. Precision radiogenomics: fusion biopsies to target tumour habitats in vivo. Br J Cancer 2021; 125: 778-779
- 4 Talhouk A, McConechy MK, Leung S. et al. Confirmation of ProMisE: A simple, genomics‐based clinical classifier for endometrial cancer. Cancer 2017; 123: 802-813
- 5 Panico C, Avesani G, Zormpas-Petridis K. et al. Radiomics and Radiogenomics of Ovarian Cancer. Radiologic Clinics of North America 2023; 61: 749-760
- 6 Salomon-Perzyński A, Salomon-Perzyńska M, Michalski B. et al. High-grade serous ovarian cancer: The clone wars. Arch Gynecol Obstet 2017; 295: 569-576
- 7 Schwarz RF, Ng CKY, Cooke SL. et al. Spatial and Temporal Heterogeneity in High-Grade Serous Ovarian Cancer: A Phylogenetic Analysis. PLoS Med 2015; 12: e1001789
- 8 Bashashati A, Ha G, Tone A. et al. Distinct evolutionary trajectories of primary high‐grade serous ovarian cancers revealed through spatial mutational profiling. J Pathol 2013; 231: 21-34
- 9 Patch A-M, Christie EL, Etemadmoghadam D. et al. Whole–genome characterization of chemoresistant ovarian cancer. Nature 2015; 521: 489-494
- 10 Masoodi T, Siraj S, Siraj AK. et al. Genetic heterogeneity and evolutionary history of high-grade ovarian carcinoma and matched distant metastases. Br J Cancer 2020; 122: 1219-1230
- 11 Cunnea P, Curry EW, Christie EL. et al. Spatial and temporal intra-tumoral heterogeneity in advanced HGSOC: Implications for surgical and clinical outcomes. Cell Reports Medicine 2023; 4: 101055
- 12 Sala E, Mema E, Himoto Y. et al. Unravelling tumour heterogeneity using next-generation imaging: Radiomics, radiogenomics, and habitat imaging. Clinical Radiology 2017; 72: 3-10
- 13 Vargas HA, Veeraraghavan H, Micco M. et al. A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome. Eur Radiol 2017; 27: 3991-4001
- 14 Nougaret S, Lakhman Y, Molinari N. et al. CT Features of Ovarian Tumors: Defining Key Differences Between Serous Borderline Tumors and Low-Grade Serous Carcinomas. American Journal of Roentgenology 2018; 210: 918-926
- 15 Weigelt B, Vargas HA, Selenica P. et al. Radiogenomics Analysis of Intratumor Heterogeneity in a Patient With High-Grade Serous Ovarian Cancer. JCO Precision Oncology 2019; 1-9
- 16 Beer L, Sahin H, Bateman NW. et al. Integration of proteomics with CT-based qualitative and radiomic features in high-grade serous ovarian cancer patients: An exploratory analysis. Eur Radiol 2020; 30: 4306-4316
- 17 Nero C, Ciccarone F, Boldrini L. et al. Germline BRCA 1–2 status prediction through ovarian ultrasound images radiogenomics: A hypothesis generating study (PROBE study). Sci Rep 2020; 10: 16511
- 18 Cao Y, Jiang Y, Song J. et al. CT-based radiomics nomogram analysis for assessing BRCA mutation status in patients with high-grade serous ovarian cancer. Acta Radiol 2023; 64: 2802-2811
- 19 Feng S, Xia T, Ge Y. et al. Computed Tomography Imaging-Based Radiogenomics Analysis Reveals Hypoxia Patterns and Immunological Characteristics in Ovarian Cancer. Front Immunol 2022; 13: 868067
- 20 Ju H-Y, Youn SY, Kang J. et al. Integrated analysis of spatial transcriptomics and CT phenotypes for unveiling the novel molecular characteristics of recurrent and non-recurrent high-grade serous ovarian cancer. Biomark Res 2024; 12: 80
- 21 Wu Y, Zhang Q, Jiang W. et al. CT-based radiomics predicts HRD score and HRD status in patients with ovarian cancer. Front Oncol 2025; 14: 1477759
- 22 Vargas HA, Miccò M, Hong SI. et al. Association between Morphologic CT Imaging Traits and Prognostically Relevant Gene Signatures in Women with High-Grade Serous Ovarian Cancer: A Hypothesis-generating Study. Radiology 2015; 274: 742-751
- 23 Vargas HA, Huang EP, Lakhman Y. et al. Radiogenomics of High-Grade Serous Ovarian Cancer: Multireader Multi-Institutional Study from the Cancer Genome Atlas Ovarian Cancer Imaging Research Group. Radiology 2017; 285: 482-492
- 24 Nougaret S, Lakhman Y, Gönen M. et al. High-Grade Serous Ovarian Cancer: Associations between BRCA Mutation Status, CT Imaging Phenotypes, and Clinical Outcomes. Radiology 2017; 285: 472-481
- 25 Meier A, Veeraraghavan H, Nougaret S. et al. Association between CT-texture-derived tumor heterogeneity, outcomes, and BRCA mutation status in patients with high-grade serous ovarian cancer. Abdom Radiol 2019; 44: 2040-2047
- 26 Avesani G, Tran HE, Cammarata G. et al. CT-Based Radiomics and Deep Learning for BRCA Mutation and Progression-Free Survival Prediction in Ovarian Cancer Using a Multicentric Dataset. Cancers 2022; 14: 2739
- 27 Lu H, Arshad M, Thornton A. et al. A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat Commun 2019; 10: 764
- 28 Gao L, Jiang W, Yue Q. et al. Radiomic model to predict the expression of PD-1 and overall survival of patients with ovarian cancer. International Immunopharmacology 2022; 113: 109335
- 29 Wang X, Xu C, Grzegorzek M. et al. Habitat radiomics analysis of pet/ct imaging in high-grade serous ovarian cancer: Application to Ki-67 status and progression-free survival. Front Physiol 2022; 13: 948767
- 30 Gu R, Tan S, Xu Y. et al. CT radiomics prediction of CXCL9 expression and survival in ovarian cancer. J Ovarian Res 2023; 16: 180
- 31 Wan S, Zhou T, Che R. et al. CT-based machine learning radiomics predicts CCR5 expression level and survival in ovarian cancer. J Ovarian Res 2023; 16: 1
- 32 Xu W, Zhu C, Ji D. et al. CT‐based radiomics prediction of CXCL13 expression in ovarian cancer. Medical Physics 2023; 50: 6801-6814
- 33 Zhan F, He L, Yu Y. et al. A multimodal radiomic machine learning approach to predict the LCK expression and clinical prognosis in high-grade serous ovarian cancer. Sci Rep 2023; 13: 16397
- 34 Veeraraghavan H, Vargas H, Jimenez-Sanchez A. et al. Integrated Multi-Tumor Radio-Genomic Marker of Outcomes in Patients with High Serous Ovarian Carcinoma. Cancers 2020; 12: 3403
- 35 Yi X, Liu Y, Zhou B. et al. Incorporating SULF1 polymorphisms in a pretreatment CT-based radiomic model for predicting platinum resistance in ovarian cancer treatment. Biomedicine & Pharmacotherapy 2021; 133: 111013
- 36 Crispin-Ortuzar M, Woitek R, Reinius MAV. et al. Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer. Nat Commun 2023; 14: 6756
- 37 Molefi T, Mabonga L, Hull R. et al. From Genes to Clinical Practice: Exploring the Genomic Underpinnings of Endometrial Cancer. Cancers 2025; 17: 320
- 38 Yin F-F, Zhao L-J, Ji X-Y. et al. Intra-tumor heterogeneity for endometrial cancer and its clinical significance. Chinese Medical Journal 2019; 132: 1550-1562
- 39 Mota A, Oltra SS, Selenica P. et al. Intratumor genetic heterogeneity and clonal evolution to decode endometrial cancer progression. Oncogene 2022; 41: 1835-1850
- 40 Da Cruz Paula A, DeLair DF, Ferrando L. et al. Genetic and molecular subtype heterogeneity in newly diagnosed early- and advanced-stage endometrial cancer. Gynecologic Oncology 2021; 161: 535-544
- 41 Li Q, Huang Y, Xia Y. et al. Radiogenomics for predicting microsatellite instability status and PD-L1 expression with machine learning in endometrial cancers: A multicenter study. Heliyon 2023; 9: e23166
- 42 Veeraraghavan H, Friedman CF, DeLair DF. et al. Machine learning-based prediction of microsatellite instability and high tumor mutation burden from contrast-enhanced computed tomography in endometrial cancers. Sci Rep 2020; 10: 17769
- 43 Tan Q, Wang Q, Jin S. et al. Network Evolution Model-based prediction of tumor mutation burden from radiomic-clinical features in endometrial cancers. BMC Cancer 2023; 23: 712
- 44 Ma C, Zhao Y, Song Q. et al. Multi-parametric MRI-based radiomics for preoperative prediction of multiple biological characteristics in endometrial cancer. Front Oncol 2023; 13: 1280022
- 45 Song X-L, Luo H-J, Ren J-L. et al. Multisequence magnetic resonance imaging-based radiomics models for the prediction of microsatellite instability in endometrial cancer. Radiol med 2023; 128: 242-251
- 46 Lin Z, Gu W, Guo Q. et al. Multisequence MRI-based radiomics model for predicting POLE mutation status in patients with endometrial cancer. BJR 2023; 96: 20221063
- 47 Meng X, Yang D, Jin H. et al. MRI-based radiomics model for predicting endometrial cancer with high tumor mutation burden. Abdom Radiol 2024; 50: 1822-1830
- 48 Jiang X, Jia H, Zhang Z. et al. The Feasibility of Combining ADC Value With Texture Analysis of T2WI, DWI and CE-T1WI to Preoperatively Predict the Expression Levels of Ki-67 and p53 of Endometrial Carcinoma. Front Oncol 2022; 11: 805545
- 49 Ding S-X, Sun Y-F, Meng H. et al. Radiomics model based on multi-sequence MRI for preoperative prediction of ki-67 expression levels in early endometrial cancer. Sci Rep 2023; 13: 22052
- 50 Yan BC, Li Y, Ma FH. et al. Radiologists with MRI-based radiomics aids to predict the pelvic lymph node metastasis in endometrial cancer: A multicenter study. Eur Radiol 2021; 31: 411-422
- 51 Celli V, Guerreri M, Pernazza A. et al. MRI- and Histologic-Molecular-Based Radio-Genomics Nomogram for Preoperative Assessment of Risk Classes in Endometrial Cancer. Cancers 2022; 14: 5881
- 52 Cao Y, Zhang W, Wang X. et al. Multiparameter MRI-based radiomics analysis for preoperative prediction of type II endometrial cancer. Heliyon 2024; 10: e32940
- 53 Hoivik EA, Hodneland E, Dybvik JA. et al. A radiogenomics application for prognostic profiling of endometrial cancer. Commun Biol 2021; 4: 1363
- 54 Jacob H, Dybvik JA, Ytre-Hauge S. et al. An MRI-Based Radiomic Prognostic Index Predicts Poor Outcome and Specific Genetic Alterations in Endometrial Cancer. JCM 2021; 10: 538
- 55 Coada CA, Santoro M, Zybin V. et al. A Radiomic-Based Machine Learning Model Predicts Endometrial Cancer Recurrence Using Preoperative CT Radiomic Features: A Pilot Study. Cancers 2023; 15: 4534
