Open Access
CC BY 4.0 · TH Open 2025; 09: a26984219
DOI: 10.1055/a-2698-4219
Review Article

A Contemporary Review of Plasminogen Activator Inhibitor Type 1: Structure, Function, Genetic Architecture, and Intracellular/Extracellular Roles

Authors

  • Jacob Wortley*

    1   Sathyamoorthy Laboratory, Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, Texas, United States
  • Justin Vu*

    1   Sathyamoorthy Laboratory, Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, Texas, United States
  • Neha Soogoor

    1   Sathyamoorthy Laboratory, Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, Texas, United States
  • Mebeli Becerra

    1   Sathyamoorthy Laboratory, Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, Texas, United States
  • Mohanakrishnan Sathyamoorthy

    1   Sathyamoorthy Laboratory, Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, Texas, United States
    2   Department of Cardiovascular Medicine and Science, Fort Worth Institute for Molecular Medicine and Genomics Research, Fort Worth, Texas, United States
Preview

Abstract

Plasminogen activator inhibitor type 1 (PAI-1) is the key regulator of the fibrinolytic system, thereby acting as a potent mediator in thrombosis. Plasminogen activators such as PAI-1 mediate the conversion of the inactive zymogen plasminogen to plasmin, an active serine protease. As a member of the serpin superfamily, the highly conserved structure of PAI-1 is critical for its regulatory function. This review elucidates PAI-1 structure, function, and genetic architecture, and then discusses intracellular and extracellular functions that have broad implications for proliferative signaling and cell death, angiogenesis, cellular transit, and emerging roles in cancer biology. By understanding the complex and elaborate mechanism of PAI-1 in the fibrinolytic system and as a biomarker, PAI-1 may have broad implications across many disease states not related to its historical roles in fibrinolysis and thrombosis.

Authors' Contributions

Conceptualization, methodology, formal analysis, investigation M.S., J.W., writing—original draft preparation J.W., J.V., N.S., M.B., M.S., writing—review and editing M.S., J.W., J.V., N.S., M.B., visualization, supervision, project administration, and funding acquisition: M.S.. All authors have read and agreed to the published version of the article.


* These authors are co-first authors who contributed equally to this article.




Publikationsverlauf

Eingereicht: 24. Januar 2025

Angenommen: 15. Juli 2025

Accepted Manuscript online:
10. September 2025

Artikel online veröffentlicht:
26. September 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

Bibliographical Record
Jacob Wortley, Justin Vu, Neha Soogoor, Mebeli Becerra, Mohanakrishnan Sathyamoorthy. A Contemporary Review of Plasminogen Activator Inhibitor Type 1: Structure, Function, Genetic Architecture, and Intracellular/Extracellular Roles. TH Open 2025; 09: a26984219.
DOI: 10.1055/a-2698-4219
 
  • References

  • 1 Sottrup-Jensen L, Zajdel M, Claeys H, Petersen TE, Magnusson S. Amino-acid sequence of activation cleavage site in plasminogen: homology with “pro” part of prothrombin. Proc Natl Acad Sci U S A 1975; 72 (07) 2577-2581
  • 2 Choong PFM, Nadesapillai APW. Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin Orthop Relat Res 2003; ;(415 Suppl): S46-S58
  • 3 Macfarlane RG, Pilling J. Fibrinolytic activity of normal urine. Nature 1947; 159 (4049) 779
  • 4 Jung RG, Motazedian P, Ramirez FD. et al. Association between plasminogen activator inhibitor-1 and cardiovascular events: a systematic review and meta-analysis. Thromb J 2018; 16: 12
  • 5 Saes JL, Schols SEM, van Heerde WL, Nijziel MR. Hemorrhagic disorders of fibrinolysis: a clinical review. J Thromb Haemost 2018; (E-pub ahead of print)
  • 6 Wang Y, Dang J, Johnson LK, Selhamer JJ, Doe WF. Structure of the human urokinase receptor gene and its similarity to CD59 and the Ly-6 family. Eur J Biochem 1995; 227 (1-2): 116-122
  • 7 Appella E, Robinson EA, Ullrich SJ. et al. The receptor-binding sequence of urokinase. A biological function for the growth-factor module of proteases. J Biol Chem 1987; 262 (10) 4437-4440
  • 8 Alfano D, Franco P, Vocca I. et al. The urokinase plasminogen activator and its receptor: role in cell growth and apoptosis. Thromb Haemost 2005; 93 (02) 205-211
  • 9 Mahmood N, Mihalcioiu C, Rabbani SA. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): Diagnostic, prognostic, and therapeutic applications. Front Oncol 2018; 8: 24
  • 10 Roldan AL, Cubellis MV, Masucci MT. et al. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis. EMBO J 1990; 9 (02) 467-474
  • 11 Alfano D, Franco P, Stoppelli MP. Modulation of cellular function by the urokinase receptor signalling: A mechanistic view. Front Cell Dev Biol 2022; 10: 818616
  • 12 Huai Q, Zhou A, Lin L. et al. Crystal structures of two human vitronectin, urokinase and urokinase receptor complexes. Nat Struct Mol Biol 2008; 15 (04) 422-423
  • 13 Mertens HDT, Kjaergaard M, Mysling S. et al. A flexible multidomain structure drives the function of the urokinase-type plasminogen activator receptor (uPAR). J Biol Chem 2012; 287 (41) 34304-34315
  • 14 Leth JM, Leth-Espensen KZ, Kristensen KK. et al. Evolution and medical significance of LU domain-containing proteins. Int J Mol Sci 2019; 20 (11) 2760
  • 15 Degryse B. The urokinase receptor and integrins constitute a cell migration signalosome. In: Edwards D, Høyer-Hansen G, Blasi F, Sloane BF. eds. The Cancer Degradome: Proteases and Cancer Biology. New York, NY: Springer New York; 2008. :pp. 451–474. Accessed September 11, 2025 at: https://doi.org/10.1007/978-0-387-69057-5_23
  • 16 Sillen M, Miyata T, Vaughan DE, Strelkov SV, Declerck PJ. Structural insight into the two-step mechanism of PAI-1 inhibition by small molecule TM5484. Int J Mol Sci 2021; 22 (03) 1482
  • 17 Sillen M, Declerck PJ. Targeting PAI-1 in cardiovascular disease: Structural insights into PAI-1 functionality and inhibition. Front Cardiovasc Med 2020; 7: 622473 . Accessed September 11, 2025 at: https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2020.622473
  • 18 Pettersen EF, Goddard TD, Huang CC. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004; 25 (13) 1605-1612
  • 19 van Meijer M, Smilde A, Tans G, Nesheim ME, Pannekoek H, Horrevoets AJG. The suicide substrate reaction between plasminogen activator inhibitor 1 and thrombin is regulated by the cofactors vitronectin and heparin. Blood 1997; 90 (05) 1874-1882
  • 20 Lawrence DA, Strandberg L, Ericson J, Ny T. Structure-function studies of the SERPIN plasminogen activator inhibitor type 1. Analysis of chimeric strained loop mutants. J Biol Chem 1990; 265 (33) 20293-20301
  • 21 Ehrlich HJ, Gebbink RK, Keijer J, Linders M, Preissner KT, Pannekoek H. Alteration of serpin specificity by a protein cofactor. Vitronectin endows plasminogen activator inhibitor 1 with thrombin inhibitory properties. J Biol Chem 1990; 265 (22) 13029-13035
  • 22 Vaughan DE. PAI-1 and atherothrombosis. J Thromb Haemost 2005; 3 (08) 1879-1883
  • 23 Sillen M, Declerck PJ. A narrative review on plasminogen activator inhibitor-1 and its (patho)physiological role: To target or not to target?. Int J Mol Sci 2021; 22 (05) 2721
  • 24 Stefansson S, Lawrence DA. The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta 3 binding to vitronectin. Nature 1996; 383 (6599) 441-443
  • 25 Nar H, Bauer M, Stassen JM, Lang D, Gils A, Declerck PJ. Plasminogen activator inhibitor 1. Structure of the native serpin, comparison to its other conformers and implications for serpin inactivation. J Mol Biol 2000; 297 (03) 683-695
  • 26 Mottonen J, Strand A, Symersky J. et al. Structural basis of latency in plasminogen activator inhibitor-1. Nature 1992; 355 (6357) 270-273
  • 27 Gong L, Liu M, Zeng T. et al. Crystal structure of the Michaelis complex between tissue-type plasminogen activator and plasminogen activators inhibitor-1. J Biol Chem 2015; 290 (43) 25795-25804 . Accessed September 11, 2025 at: https://www.sciencedirect.com/science/article/pii/S0021925820495602
  • 28 Lin Z, Jiang L, Yuan C. et al. Structural basis for recognition of urokinase-type plasminogen activator by plasminogen activator inhibitor-1. J Biol Chem 2011; 286 (09) 7027-7032 . Accessed September 11, 2025 at: https://www.sciencedirect.com/science/article/pii/S0021925820518978
  • 29 Lawrence DA, Ginsburg D, Day DE. et al. Serpin-protease complexes are trapped as stable acyl-enzyme intermediates. J Biol Chem 1995; 270 (43) 25309-25312 . Accessed September 11, 2025 at: https://www.sciencedirect.com/science/article/pii/S0021925818923203
  • 30 Perron MJ, Blouse GE, Shore JD. Distortion of the catalytic domain of tissue-type plasminogen activator by plasminogen activator inhibitor-1 coincides with the formation of stable serpin-proteinase complexes. J Biol Chem 2003; 278 (48) 48197-48203 . Accessed September 11, 2025 at: https://www.sciencedirect.com/science/article/pii/S0021925820758540
  • 31 Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature 2000; 407 (6806) 923-926
  • 32 Gettins PGW, Olson ST. Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Biochem J 2016; 473 (15) 2273-2293
  • 33 Dewilde M, Strelkov SV, Rabijns A, Declerck PJ. High quality structure of cleaved PAI-1-stab. J Struct Biol 2009; 165 (02) 126-132 . Accessed September 11, 2025 at: https://www.sciencedirect.com/science/article/pii/S1047847708002670
  • 34 Aertgeerts K, De Bondt HL, De Ranter CJ, Declerck PJ. Mechanisms contributing to the conformational and functional flexibility of plasminogen activator inhibitor-1. Nat Struct Biol 1995; 2 (10) 891-897
  • 35 Declerck PJ, De Mol M, Vaughan DE, Collen D. Identification of a conformationally distinct form of plasminogen activator inhibitor-1, acting as a noninhibitory substrate for tissue-type plasminogen activator. J Biol Chem 1992; 267 (17) 11693-11696
  • 36 Urano T, Strandberg L, Johansson LB, Ny T. A substrate-like form of plasminogen-activator-inhibitor type 1. Conversions between different forms by sodium dodecyl sulphate. Eur J Biochem 1992; 209 (03) 985-992
  • 37 Audenaert AM, Knockaert I, Collen D, Declerck PJ. Conversion of plasminogen activator inhibitor-1 from inhibitor to substrate by point mutations in the reactive-site loop. J Biol Chem 1994; 269 (30) 19559-19564
  • 38 van Meijer M, Smilde A, Tans G, Nesheim ME, Pannekoek H, Horrevoets AJG. The suicide substrate reaction between plasminogen activator inhibitor 1 and thrombin is regulated by the cofactors vitronectin and heparin. Blood 1997; 90 (05) 1874-1882
  • 39 Lawrence DA, Palaniappan S, Stefansson S. et al. Characterization of the binding of different conformational forms of plasminogen activator inhibitor-1 to vitronectin. Implications for the regulation of pericellular proteolysis. J Biol Chem 1997; 272 (12) 7676-7680
  • 40 Declerck PJ, De Mol M, Alessi MC. et al. Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. Identification as a multimeric form of S protein (vitronectin). J Biol Chem 1988; 263 (30) 15454-15461 . Accessed September 11, 2025 at: https://www.sciencedirect.com/science/article/pii/S0021925819376100
  • 41 Komissarov AA, Andreasen PA, Bødker JS, Declerck PJ, Anagli JY, Shore JD. Additivity in effects of vitronectin and monoclonal antibodies against α-helix F of plasminogen activator inhibitor-1 on its reactions with target proteinases. J Biol Chem 2005; 280 (02) 1482-1489
  • 42 Preissner KT, Grulich-Henn J, Ehrlich HJ. et al. Structural requirements for the extracellular interaction of plasminogen activator inhibitor 1 with endothelial cell matrix-associated vitronectin. J Biol Chem 1990; 265 (30) 18490-18498
  • 43 Jung RG, Simard T, Labinaz A. et al. Role of plasminogen activator inhibitor-1 in coronary pathophysiology. Thromb Res 2018; 164: 54-62
  • 44 Binder BR, Christ G, Gruber F. et al. Plasminogen activator inhibitor 1: physiological and pathophysiological roles. News Physiol Sci 2002; 17: 56-61
  • 45 Carrell RW, Pemberton PA, Boswell DR. The serpins: evolution and adaptation in a family of protease inhibitors. Cold Spring Harb Symp Quant Biol 1987; 52: 527-535
  • 46 Strandberg L, Lawrence D, Ny T. The organization of the human-plasminogen-activator-inhibitor-1 gene. Implications on the evolution of the serine-protease inhibitor family. Eur J Biochem 1988; 176 (03) 609-616
  • 47 Van De Craen B, Declerck PJ, Gils A. The biochemistry, physiology and pathological roles of PAI-1 and the requirements for PAI-1 inhibition in vivo. Thromb Res 2012; 130 (04) 576-585
  • 48 Pannekoek H, Veerman H, Lambers H. et al. Endothelial plasminogen activator inhibitor (PAI): a new member of the Serpin gene family. EMBO J 1986; 5 (10) 2539-2544
  • 49 Ny T, Sawdey M, Lawrence D, Millan JL, Loskutoff DJ. Cloning and sequence of a cDNA coding for the human beta-migrating endothelial-cell-type plasminogen activator inhibitor. Proc Natl Acad Sci U S A 1986; 83 (18) 6776-6780
  • 50 Ginsburg D, Zeheb R, Yang AY. et al. cDNA cloning of human plasminogen activator-inhibitor from endothelial cells. J Clin Invest 1986; 78 (06) 1673-1680
  • 51 Andreasen PA, Riccio A, Welinder KG. et al. Plasminogen activator inhibitor type-1: reactive center and amino-terminal heterogeneity determined by protein and cDNA sequencing. FEBS Lett 1986; 209 (02) 213-218
  • 52 Loskutoff DJ, Linders M, Keijer J, Veerman H, van Heerikhuizen H, Pannekoek H. Structure of the human plasminogen activator inhibitor 1 gene: nonrandom distribution of introns. Biochemistry 1987; 26 (13) 3763-3768
  • 53 Providence KM, White LA, Tang J, Gonclaves J, Staiano-Coico L, Higgins PJ. Epithelial monolayer wounding stimulates binding of USF-1 to an E-box motif in the plasminogen activator inhibitor type 1 gene. J Cell Sci 2002; 115 (Pt 19): 3767-3777
  • 54 Brown NJ, Kim KS, Chen YQ. et al. Synergistic effect of adrenal steroids and angiotensin II on plasminogen activator inhibitor-1 production. J Clin Endocrinol Metab 2000; 85 (01) 336-344
  • 55 van Zonneveld AJ, Curriden SA, Loskutoff DJ. Type 1 plasminogen activator inhibitor gene: functional analysis and glucocorticoid regulation of its promoter. Proc Natl Acad Sci U S A 1988; 85 (15) 5525-5529
  • 56 Skurk T, Lee YM, Hauner H. Angiotensin II and its metabolites stimulate PAI-1 protein release from human adipocytes in primary culture. Hypertension 2001; 37 (05) 1336-1340
  • 57 Eriksson P, Nilsson L, Karpe F, Hamsten A. Very-low-density lipoprotein response element in the promoter region of the human plasminogen activator inhibitor-1 gene implicated in the impaired fibrinolysis of hypertriglyceridemia. Arterioscler Thromb Vasc Biol 1998; 18 (01) 20-26
  • 58 Pont F, Duvillard L, Florentin E, Gambert P, Vergès B. Early kinetic abnormalities of apoB-containing lipoproteins in insulin-resistant women with abdominal obesity. Arterioscler Thromb Vasc Biol 2002; 22 (10) 1726-1732
  • 59 Chen YQ, Su M, Walia RR, Hao Q, Covington JW, Vaughan DE. Sp1 sites mediate activation of the plasminogen activator inhibitor-1 promoter by glucose in vascular smooth muscle cells. J Biol Chem 1998; 273 (14) 8225-8231
  • 60 Song C, Burgess S, Eicher JD, O'Donnell CJ, Johnson AD. Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease. J Am Heart Assoc 2017; 6 (06) e004918
  • 61 Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998; 17 (11) 3091-3100
  • 62 Kunz C, Pebler S, Otte J, von der Ahe D. Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53. Nucleic Acids Res 1995; 23 (18) 3710-3717
  • 63 Boekholdt SM, Bijsterveld NR, Moons AH, Levi M, Büller HR, Peters RJ. Genetic variation in coagulation and fibrinolytic proteins and their relation with acute myocardial infarction: a systematic review. Circulation 2001; 104 (25) 3063-3068
  • 64 Huang J, Sabater-Lleal M, Asselbergs FW. et al; DIAGRAM Consortium, CARDIoGRAM Consortium, C4D Consortium, CARDIOGENICS Consortium. Genome-wide association study for circulating levels of PAI-1 provides novel insights into its regulation. Blood 2012; 120 (24) 4873-4881
  • 65 Koch W, Schrempf M, Erl A. et al. 4G/5G polymorphism and haplotypes of SERPINE1 in atherosclerotic diseases of coronary arteries. Thromb Haemost 2010; 103 (06) 1170-1180
  • 66 Brogren H, Wallmark K, Deinum J, Karlsson L, Jern S. Platelets retain high levels of active plasminogen activator inhibitor 1. PLoS ONE 2011; 6 (11) e26762
  • 67 Culej Bošnjak D, Balent T, Korać P, Antica M, Matulić M. Urokinase plasminogen activation system modulation in transformed cell lines. Int J Mol Sci 2025; 26 (02) 675
  • 68 Ismail AA, Shaker BT, Bajou K. The plasminogen-activator plasmin system in physiological and pathophysiological angiogenesis. Int J Mol Sci 2021; 23 (01) 337
  • 69 De Lorenzi V, Sarra Ferraris GM, Madsen JB, Lupia M, Andreasen PA, Sidenius N. Urokinase links plasminogen activation and cell adhesion by cleavage of the RGD motif in vitronectin. EMBO Rep 2016; 17 (07) 982-998
  • 70 Deng G, Curriden SA, Wang S, Rosenberg S, Loskutoff DJ. Is plasminogen activator inhibitor-1 the molecular switch that governs urokinase receptor-mediated cell adhesion and release?. J Cell Biol 1996; 134 (06) 1563-1571
  • 71 Waltz DA, Natkin LR, Fujita RM, Wei Y, Chapman HA. Plasmin and plasminogen activator inhibitor type 1 promote cellular motility by regulating the interaction between the urokinase receptor and vitronectin. J Clin Invest 1997; 100 (01) 58-67
  • 72 Kjøller L, Kanse SM, Kirkegaard T. et al. Plasminogen activator inhibitor-1 represses integrin- and vitronectin-mediated cell migration independently of its function as an inhibitor of plasminogen activation. Exp Cell Res 1997; 232 (02) 420-429
  • 73 Kozlova N, Jensen JK, Chi TF, Samoylenko A, Kietzmann T. PAI-1 modulates cell migration in a LRP1-dependent manner via β-catenin and ERK1/2. Thromb Haemost 2015; 113 (05) 988-998
  • 74 Binder BR, Mihaly J, Prager GW. uPAR-uPA-PAI-1 interactions and signaling: a vascular biologist's view. Thromb Haemost 2007; 97 (03) 336-342
  • 75 Miszta A, Huskens D, Donkervoort D, Roberts MJM, Wolberg AS, de Laat B. Assessing plasmin generation in health and disease. Int J Mol Sci 2021; 22 (05) 2758 . Accessed September 11, 2025 at: https://research.ebsco.com/linkprocessor/plink?id=5f2e7060-9f50-3319-a570-161dd7908acd
  • 76 Mehic D, Reitsma SE, de Moreuil C. et al. Plasmin generation analysis in patients with bleeding disorder of unknown cause. Blood Adv 2024; 8 (21) 5663-5673
  • 77 Puster LO, Stanley CB, Uversky VN. et al. Characterization of an extensive interface on vitronectin for binding to plasminogen activator inhibitor-1: Adoption of structure in an intrinsically disordered region. Biochemistry 2019; 58 (51) 5117-5134
  • 78 Kihn K, Marchiori E, Spagnolli G. et al. Long-range allostery mediates the regulation of plasminogen activator inhibitor-1 by cell adhesion factor vitronectin. J Biol Chem 2022; 298 (12) 102652
  • 79 Czekay RP, Aertgeerts K, Curriden SA, Loskutoff DJ. Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J Cell Biol 2003; 160 (05) 781-791
  • 80 Webb DJ, Thomas KS, Gonias SL. Plasminogen activator inhibitor 1 functions as a urokinase response modifier at the level of cell signaling and thereby promotes MCF-7 cell growth. J Cell Biol 2001; 152 (04) 741-752
  • 81 Duffy MJ. The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des 2004; 10 (01) 39-49
  • 82 Høyer-Hansen G, Rønne E, Solberg H. et al. Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain. J Biol Chem 1992; 267 (25) 18224-18229
  • 83 Sidenius N, Blasi F. Domain 1 of the urokinase receptor (uPAR) is required for uPAR-mediated cell binding to vitronectin. FEBS Lett 2000; 470 (01) 40-46
  • 84 van Veen M, Matas-Rico E, van de Wetering K. et al. Negative regulation of urokinase receptor activity by a GPI-specific phospholipase C in breast cancer cells. eLife 2017; 6: e23649
  • 85 Fazioli F, Resnati M, Sidenius N, Higashimoto Y, Appella E, Blasi F. A urokinase-sensitive region of the human urokinase receptor is responsible for its chemotactic activity. EMBO J 1997; 16 (24) 7279-7286
  • 86 Bifulco K, Votta G, Ingangi V. et al. Urokinase receptor promotes ovarian cancer cell dissemination through its 84-95 sequence. Oncotarget 2014; 5 (12) 4154-4169
  • 87 Bifulco K, Longanesi-Cattani I, Franco P. et al. Single amino acid substitutions in the chemotactic sequence of urokinase receptor modulate cell migration and invasion. PLoS ONE 2012; 7 (09) e44806
  • 88 Degryse B, Resnati M, Rabbani SA, Villa A, Fazioli F, Blasi F. Src-dependence and pertussis-toxin sensitivity of urokinase receptor-dependent chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. Blood 1999; 94 (02) 649-662
  • 89 Vial D, McKeown-Longo PJ. PAI1 stimulates assembly of the fibronectin matrix in osteosarcoma cells through crosstalk between the alphavbeta5 and alpha5beta1 integrins. J Cell Sci 2008; 121 (Pt 10): 1661-1670
  • 90 Sathyamoorthy M, Matta P, Vaughan DE. Loss of PAI-1 through siRNA increases adhesion of monocytes to vitronectin. 2008
  • 91 Sathyamoorthy M, Matta P, Vaughan DE. PAI-1 deficiency enhances early outgrowth culture expanded and circulating endothelial progenitor cells: Implications for the fibrinolytic system in stem cell biology. 2008
  • 92 Kubala MH, DeClerck YA. The plasminogen activator inhibitor-1 paradox in cancer: a mechanistic understanding. Cancer Metastasis Rev 2019; 38 (03) 483-492
  • 93 McCann JV, Xiao L, Kim DJ. et al. Endothelial miR-30c suppresses tumor growth via inhibition of TGF-β-induced Serpine1. J Clin Invest 2019; 129 (04) 1654-1670
  • 94 Bajou K, Masson V, Gerard RD. et al. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J Cell Biol 2001; 152 (04) 777-784
  • 95 Devy L, Blacher S, Grignet-Debrus C. et al. The pro- or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. FASEB J 2002; 16 (02) 147-154
  • 96 Degryse B, Neels JG, Czekay RP, Aertgeerts K, Kamikubo Y, Loskutoff DJ. The low density lipoprotein receptor-related protein is a motogenic receptor for plasminogen activator inhibitor-1. J Biol Chem 2004; 279 (21) 22595-22604
  • 97 Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev 2008; 88 (03) 887-918
  • 98 Czekay RP, Loskutoff DJ. Plasminogen activator inhibitors regulate cell adhesion through a uPAR-dependent mechanism. J Cell Physiol 2009; 220 (03) 655-663
  • 99 Gutierrez LS, Schulman A, Brito-Robinson T, Noria F, Ploplis VA, Castellino FJ. Tumor development is retarded in mice lacking the gene for urokinase-type plasminogen activator or its inhibitor, plasminogen activator inhibitor-1. Cancer Res 2000; 60 (20) 5839-5847
  • 100 Estreicher A, Mühlhauser J, Carpentier JL, Orci L, Vassalli JD. The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes. J Cell Biol 1990; 111 (02) 783-792
  • 101 Kamikubo Y, Neels JG, Degryse B. Vitronectin inhibits plasminogen activator inhibitor-1-induced signalling and chemotaxis by blocking plasminogen activator inhibitor-1 binding to the low-density lipoprotein receptor-related protein. Int J Biochem Cell Biol 2009; 41 (03) 578-585
  • 102 Hou SX, Zheng Z, Chen X, Perrimon N. The Jak/STAT pathway in model organisms: emerging roles in cell movement. Dev Cell 2002; 3 (06) 765-778
  • 103 Czekay RP, Wilkins-Port CE, Higgins SP. et al. PAI-1: An integrator of cell signaling and migration. Int J Cell Biol 2011; 2011: 562481
  • 104 Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 2002; 3 (12) 932-943
  • 105 He Z, Wang G, Wu J, Tang Z, Luo M. The molecular mechanism of LRP1 in physiological vascular homeostasis and signal transduction pathways. Biomed Pharmacother 2021; 139: 111667
  • 106 Ma Z, Thomas KS, Webb DJ. et al. Regulation of Rac1 activation by the low density lipoprotein receptor-related protein. J Cell Biol 2002; 159 (06) 1061-1070
  • 107 Koshelnick Y, Ehart M, Hufnagl P, Heinrich PC, Binder BR. Urokinase receptor is associated with the components of the JAK1/STAT1 signaling pathway and leads to activation of this pathway upon receptor clustering in the human kidney epithelial tumor cell line TCL-598. J Biol Chem 1997; 272 (45) 28563-28567
  • 108 Dumler I, Weis A, Mayboroda OA. et al. The Jak/Stat pathway and urokinase receptor signaling in human aortic vascular smooth muscle cells. J Biol Chem 1998; 273 (01) 315-321
  • 109 Dumler I, Kopmann A, Wagner K. et al. Urokinase induces activation and formation of Stat4 and Stat1-Stat2 complexes in human vascular smooth muscle cells. J Biol Chem 1999; 274 (34) 24059-24065
  • 110 Andreasen PA, Kjøller L, Christensen L, Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 1997; 72 (01) 1-22
  • 111 Hundsdorfer B, Zeilhofer HF, Bock KP, Dettmar P, Schmitt M, Horch HH. [The prognostic importance of urinase type plasminogen activators (uPA) and plasminogen activator inhibitors (PAI-1) in the primary resection of oral squamous cell carcinoma]. Mund Kiefer Gesichtschir 2004; 8 (03) 173-179
  • 112 Durand MKV, Bødker JS, Christensen A. et al. Plasminogen activator inhibitor-I and tumour growth, invasion, and metastasis. Thromb Haemost 2004; 91 (03) 438-449
  • 113 Kelly TE, Spillane CL, Ward MP. et al. Plasminogen activator inhibitor 1 is associated with high-grade serous ovarian cancer metastasis and is reduced in patients who have received neoadjuvant chemotherapy. Front Cell Dev Biol 2023; 11: 1150991
  • 114 Chen SC, Henry DO, Reczek PR, Wong MKK. Plasminogen activator inhibitor-1 inhibits prostate tumor growth through endothelial apoptosis. Mol Cancer Ther 2008; 7 (05) 1227-1236
  • 115 Morita Y, Hayashi Y, Kanamaru T. et al. Inhibitory role of plasminogen activator inhibitor-1 in invasion and proliferation of HLE hepatocellular carcinoma cells. Jpn J Cancer Res 1999; 90 (07) 747-752
  • 116 Giacoia EG, Miyake M, Lawton A, Goodison S, Rosser CJ. PAI-1 leads to G1-phase cell-cycle progression through cyclin D3/cdk4/6 upregulation. Mol Cancer Res 2014; 12 (03) 322-334
  • 117 Mashiko S, Kitatani K, Toyoshima M. et al. Inhibition of plasminogen activator inhibitor-1 is a potential therapeutic strategy in ovarian cancer. Cancer Biol Ther 2015; 16 (02) 253-260
  • 118 Li CF, Kandel C, Baliko F, Nadesan P, Brünner N, Alman BA. Plasminogen activator inhibitor-1 (PAI-1) modifies the formation of aggressive fibromatosis (desmoid tumor). Oncogene 2005; 24 (09) 1615-1624
  • 119 Vial D, Monaghan-Benson E, McKeown-Longo PJ. Coordinate regulation of fibronectin matrix assembly by the plasminogen activator system and vitronectin in human osteosarcoma cells. Cancer Cell Int 2006; 6: 8
  • 120 McEachron TA, Pawlinski R, Richards KL, Church FC, Mackman N. Protease-activated receptors mediate crosstalk between coagulation and fibrinolysis. Blood 2010; 116 (23) 5037-5044
  • 121 McEachron TA, Church FC, Mackman N. Regulation of thrombin-induced plasminogen activator inhibitor-1 in 4T1 murine breast cancer cells. Blood Coagul Fibrinolysis 2011; 22 (07) 576-582
  • 122 Mazzieri R, Blasi F. The urokinase receptor and the regulation of cell proliferation. Thromb Haemost 2005; 93 (04) 641-646
  • 123 Soeda S, Shinomiya K, Ochiai T. et al. Plasminogen activator inhibitor-1 aids nerve growth factor-induced differentiation and survival of pheochromocytoma cells by activating both the extracellular signal-regulated kinase and c-Jun pathways. Neuroscience 2006; 141 (01) 101-108
  • 124 Kortlever RM, Higgins PJ, Bernards R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 2006; 8 (08) 877-884
  • 125 Rana T, Jiang C, Banerjee S. et al. PAI-1 regulation of p53 expression and senescence in type II alveolar epithelial cells. Cells 2023; 12 (15) 2008
  • 126 Vaughan DE, Rai R, Khan SS, Eren M, Ghosh AK. Plasminogen activator inhibitor-1 is a marker and a mediator of senescence. Arterioscler Thromb Vasc Biol 2017; 37 (08) 1446-1452
  • 127 Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L. ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 2003; 63 (07) 1684-1695
  • 128 Beaulieu LM, Whitley BR, Wiesner TF. et al. Breast cancer and metabolic syndrome linked through the plasminogen activator inhibitor-1 cycle. BioEssays 2007; 29 (10) 1029-1038
  • 129 Schneider DJ, Chen Y, Sobel BE. The effect of plasminogen activator inhibitor type 1 on apoptosis. Thromb Haemost 2008; 100 (06) 1037-1040
  • 130 Fang H, Placencio VR, DeClerck YA. Protumorigenic activity of plasminogen activator inhibitor-1 through an antiapoptotic function. J Natl Cancer Inst 2012; 104 (19) 1470-1484
  • 131 Valiente M, Obenauf AC, Jin X. et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 2014; 156 (05) 1002-1016
  • 132 Kwaan HC, McMahon B. The role of plasminogen-plasmin system in cancer. Cancer Treat Res 2009; 148: 43-66
  • 133 Balsara RD, Ploplis VA. Plasminogen activator inhibitor-1: the double-edged sword in apoptosis. Thromb Haemost 2008; 100 (06) 1029-1036
  • 134 Balsara RD, Castellino FJ, Ploplis VA. A novel function of plasminogen activator inhibitor-1 in modulation of the AKT pathway in wild-type and plasminogen activator inhibitor-1-deficient endothelial cells. J Biol Chem 2006; 281 (32) 22527-22536
  • 135 Alfano D, Iaccarino I, Stoppelli MP. Urokinase signaling through its receptor protects against anoikis by increasing BCL-xL expression levels. J Biol Chem 2006; 281 (26) 17758-17767
  • 136 Tsuruta F, Masuyama N, Gotoh Y. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. J Biol Chem 2002; 277 (16) 14040-14047
  • 137 Balsara RD, Xu Z, Ploplis VA. Targeting plasminogen activator inhibitor-1: role in cell signaling and the biology of domain-specific knock-in mice. Curr Drug Targets 2007; 8 (09) 982-995
  • 138 Cajot JF, Bamat J, Bergonzelli GE. et al. Plasminogen-activator inhibitor type 1 is a potent natural inhibitor of extracellular matrix degradation by fibrosarcoma and colon carcinoma cells. Proc Natl Acad Sci U S A 1990; 87 (18) 6939-6943
  • 139 Alizadeh H, Ma D, Berman M. et al. Tissue-type plasminogen activator-induced invasion and metastasis of murine melanomas. Curr Eye Res 1995; 14 (06) 449-458
  • 140 Bajou K, Maillard C, Jost M. et al. Host-derived plasminogen activator inhibitor-1 (PAI-1) concentration is critical for in vivo tumoral angiogenesis and growth. Oncogene 2004; 23 (41) 6986-6990
  • 141 Chen H, Peng H, Liu W. et al. Silencing of plasminogen activator inhibitor-1 suppresses colorectal cancer progression and liver metastasis. Surgery 2015; 158 (06) 1704-1713
  • 142 Kwaan HC, Mazar AP, McMahon BJ. The apparent uPA/PAI-1 paradox in cancer: more than meets the eye. Semin Thromb Hemost 2013; 39 (04) 382-391
  • 143 Bajou K, Peng H, Laug WE. et al. Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis. Cancer Cell 2008; 14 (04) 324-334
  • 144 Olander JV, Bremer ME, Marasa JC, Feder J. Fibrin-enhanced endothelial cell organization. J Cell Physiol 1985; 125 (01) 1-9
  • 145 Qi J, Goralnick S, Kreutzer DL. Fibrin regulation of interleukin-8 gene expression in human vascular endothelial cells. Blood 1997; 90 (09) 3595-3602
  • 146 Inoue M, Sawada T, Uchima Y. et al. Plasminogen activator inhibitor-1 (PAI-1) gene transfection inhibits the liver metastasis of pancreatic cancer by preventing angiogenesis. Oncol Rep 2005; 14 (06) 1445-1451
  • 147 Marshall LJ, Ramdin LSP, Brooks T, DPhil PC, Shute JK. Plasminogen activator inhibitor-1 supports IL-8-mediated neutrophil transendothelial migration by inhibition of the constitutive shedding of endothelial IL-8/heparan sulfate/syndecan-1 complexes. J Immunol 2003; 171 (04) 2057-2065
  • 148 Kubala MH, Punj V, Placencio-Hickok VR. et al. Plasminogen activator inhibitor-1 promotes the recruitment and polarization of macrophages in cancer. Cell Rep 2018; 25 (08) 2177-2191.e7