RSS-Feed abonnieren

DOI: 10.1055/a-2698-4219
A Contemporary Review of Plasminogen Activator Inhibitor Type 1: Structure, Function, Genetic Architecture, and Intracellular/Extracellular Roles
Authors

Abstract
Plasminogen activator inhibitor type 1 (PAI-1) is the key regulator of the fibrinolytic system, thereby acting as a potent mediator in thrombosis. Plasminogen activators such as PAI-1 mediate the conversion of the inactive zymogen plasminogen to plasmin, an active serine protease. As a member of the serpin superfamily, the highly conserved structure of PAI-1 is critical for its regulatory function. This review elucidates PAI-1 structure, function, and genetic architecture, and then discusses intracellular and extracellular functions that have broad implications for proliferative signaling and cell death, angiogenesis, cellular transit, and emerging roles in cancer biology. By understanding the complex and elaborate mechanism of PAI-1 in the fibrinolytic system and as a biomarker, PAI-1 may have broad implications across many disease states not related to its historical roles in fibrinolysis and thrombosis.
Keywords
PAI-1 - extracellular matrix - genetics - fibrinolytic system - cell migration - cell proliferationAuthors' Contributions
Conceptualization, methodology, formal analysis, investigation M.S., J.W., writing—original draft preparation J.W., J.V., N.S., M.B., M.S., writing—review and editing M.S., J.W., J.V., N.S., M.B., visualization, supervision, project administration, and funding acquisition: M.S.. All authors have read and agreed to the published version of the article.
* These authors are co-first authors who contributed equally to this article.
Publikationsverlauf
Eingereicht: 24. Januar 2025
Angenommen: 15. Juli 2025
Accepted Manuscript online:
10. September 2025
Artikel online veröffentlicht:
26. September 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
Jacob Wortley, Justin Vu, Neha Soogoor, Mebeli Becerra, Mohanakrishnan Sathyamoorthy. A Contemporary Review of Plasminogen Activator Inhibitor Type 1: Structure, Function, Genetic Architecture, and Intracellular/Extracellular Roles. TH Open 2025; 09: a26984219.
DOI: 10.1055/a-2698-4219
-
References
- 1
Sottrup-Jensen L,
Zajdel M,
Claeys H,
Petersen TE,
Magnusson S.
Amino-acid sequence of activation cleavage site in plasminogen: homology with “pro”
part of prothrombin. Proc Natl Acad Sci U S A 1975; 72 (07) 2577-2581
Reference Ris Wihthout Link
- 2
Choong PFM,
Nadesapillai APW.
Urokinase plasminogen activator system: a multifunctional role in tumor progression
and metastasis. Clin Orthop Relat Res 2003; ;(415 Suppl): S46-S58
Reference Ris Wihthout Link
- 3
Macfarlane RG,
Pilling J.
Fibrinolytic activity of normal urine. Nature 1947; 159 (4049) 779
Reference Ris Wihthout Link
- 4
Jung RG,
Motazedian P,
Ramirez FD.
et al.
Association between plasminogen activator inhibitor-1 and cardiovascular events: a
systematic review and meta-analysis. Thromb J 2018; 16: 12
Reference Ris Wihthout Link
- 5
Saes JL,
Schols SEM,
van Heerde WL,
Nijziel MR.
Hemorrhagic disorders of fibrinolysis: a clinical review. J Thromb Haemost 2018; (E-pub
ahead of print)
Reference Ris Wihthout Link
- 6
Wang Y,
Dang J,
Johnson LK,
Selhamer JJ,
Doe WF.
Structure of the human urokinase receptor gene and its similarity to CD59 and the
Ly-6 family. Eur J Biochem 1995; 227 (1-2): 116-122
Reference Ris Wihthout Link
- 7
Appella E,
Robinson EA,
Ullrich SJ.
et al.
The receptor-binding sequence of urokinase. A biological function for the growth-factor
module of proteases. J Biol Chem 1987; 262 (10) 4437-4440
Reference Ris Wihthout Link
- 8
Alfano D,
Franco P,
Vocca I.
et al.
The urokinase plasminogen activator and its receptor: role in cell growth and apoptosis.
Thromb Haemost 2005; 93 (02) 205-211
Reference Ris Wihthout Link
- 9
Mahmood N,
Mihalcioiu C,
Rabbani SA.
Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor
(uPAR): Diagnostic, prognostic, and therapeutic applications. Front Oncol 2018; 8:
24
Reference Ris Wihthout Link
- 10
Roldan AL,
Cubellis MV,
Masucci MT.
et al.
Cloning and expression of the receptor for human urokinase plasminogen activator,
a central molecule in cell surface, plasmin dependent proteolysis. EMBO J 1990; 9
(02) 467-474
Reference Ris Wihthout Link
- 11
Alfano D,
Franco P,
Stoppelli MP.
Modulation of cellular function by the urokinase receptor signalling: A mechanistic
view. Front Cell Dev Biol 2022; 10: 818616
Reference Ris Wihthout Link
- 12
Huai Q,
Zhou A,
Lin L.
et al.
Crystal structures of two human vitronectin, urokinase and urokinase receptor complexes.
Nat Struct Mol Biol 2008; 15 (04) 422-423
Reference Ris Wihthout Link
- 13
Mertens HDT,
Kjaergaard M,
Mysling S.
et al.
A flexible multidomain structure drives the function of the urokinase-type plasminogen
activator receptor (uPAR). J Biol Chem 2012; 287 (41) 34304-34315
Reference Ris Wihthout Link
- 14
Leth JM,
Leth-Espensen KZ,
Kristensen KK.
et al.
Evolution and medical significance of LU domain-containing proteins. Int J Mol Sci
2019; 20 (11) 2760
Reference Ris Wihthout Link
- 15
Degryse B.
The urokinase receptor and integrins constitute a cell migration signalosome. In:
Edwards D,
Høyer-Hansen G,
Blasi F,
Sloane BF.
eds.
The Cancer Degradome: Proteases and Cancer Biology. New York, NY: Springer New York;
2008. :pp. 451–474. Accessed September 11, 2025 at: https://doi.org/10.1007/978-0-387-69057-5_23
Reference Ris Wihthout Link
- 16
Sillen M,
Miyata T,
Vaughan DE,
Strelkov SV,
Declerck PJ.
Structural insight into the two-step mechanism of PAI-1 inhibition by small molecule
TM5484. Int J Mol Sci 2021; 22 (03) 1482
Reference Ris Wihthout Link
- 17
Sillen M,
Declerck PJ.
Targeting PAI-1 in cardiovascular disease: Structural insights into PAI-1 functionality
and inhibition. Front Cardiovasc Med 2020; 7: 622473 . Accessed September 11, 2025
at: https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2020.622473
Reference Ris Wihthout Link
- 18
Pettersen EF,
Goddard TD,
Huang CC.
et al.
UCSF Chimera–a visualization system for exploratory research and analysis. J Comput
Chem 2004; 25 (13) 1605-1612
Reference Ris Wihthout Link
- 19
van Meijer M,
Smilde A,
Tans G,
Nesheim ME,
Pannekoek H,
Horrevoets AJG.
The suicide substrate reaction between plasminogen activator inhibitor 1 and thrombin
is regulated by the cofactors vitronectin and heparin. Blood 1997; 90 (05) 1874-1882
Reference Ris Wihthout Link
- 20
Lawrence DA,
Strandberg L,
Ericson J,
Ny T.
Structure-function studies of the SERPIN plasminogen activator inhibitor type 1. Analysis
of chimeric strained loop mutants. J Biol Chem 1990; 265 (33) 20293-20301
Reference Ris Wihthout Link
- 21
Ehrlich HJ,
Gebbink RK,
Keijer J,
Linders M,
Preissner KT,
Pannekoek H.
Alteration of serpin specificity by a protein cofactor. Vitronectin endows plasminogen
activator inhibitor 1 with thrombin inhibitory properties. J Biol Chem 1990; 265 (22)
13029-13035
Reference Ris Wihthout Link
- 22
Vaughan DE.
PAI-1 and atherothrombosis. J Thromb Haemost 2005; 3 (08) 1879-1883
Reference Ris Wihthout Link
- 23
Sillen M,
Declerck PJ.
A narrative review on plasminogen activator inhibitor-1 and its (patho)physiological
role: To target or not to target?. Int J Mol Sci 2021; 22 (05) 2721
Reference Ris Wihthout Link
- 24
Stefansson S,
Lawrence DA.
The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta 3 binding
to vitronectin. Nature 1996; 383 (6599) 441-443
Reference Ris Wihthout Link
- 25
Nar H,
Bauer M,
Stassen JM,
Lang D,
Gils A,
Declerck PJ.
Plasminogen activator inhibitor 1. Structure of the native serpin, comparison to its
other conformers and implications for serpin inactivation. J Mol Biol 2000; 297 (03)
683-695
Reference Ris Wihthout Link
- 26
Mottonen J,
Strand A,
Symersky J.
et al.
Structural basis of latency in plasminogen activator inhibitor-1. Nature 1992; 355
(6357) 270-273
Reference Ris Wihthout Link
- 27
Gong L,
Liu M,
Zeng T.
et al.
Crystal structure of the Michaelis complex between tissue-type plasminogen activator
and plasminogen activators inhibitor-1. J Biol Chem 2015; 290 (43) 25795-25804 . Accessed
September 11, 2025 at: https://www.sciencedirect.com/science/article/pii/S0021925820495602
Reference Ris Wihthout Link
- 28
Lin Z,
Jiang L,
Yuan C.
et al.
Structural basis for recognition of urokinase-type plasminogen activator by plasminogen
activator inhibitor-1. J Biol Chem 2011; 286 (09) 7027-7032 . Accessed September 11,
2025 at: https://www.sciencedirect.com/science/article/pii/S0021925820518978
Reference Ris Wihthout Link
- 29
Lawrence DA,
Ginsburg D,
Day DE.
et al.
Serpin-protease complexes are trapped as stable acyl-enzyme intermediates. J Biol
Chem 1995; 270 (43) 25309-25312 . Accessed September 11, 2025 at: https://www.sciencedirect.com/science/article/pii/S0021925818923203
Reference Ris Wihthout Link
- 30
Perron MJ,
Blouse GE,
Shore JD.
Distortion of the catalytic domain of tissue-type plasminogen activator by plasminogen
activator inhibitor-1 coincides with the formation of stable serpin-proteinase complexes.
J Biol Chem 2003; 278 (48) 48197-48203 . Accessed September 11, 2025 at: https://www.sciencedirect.com/science/article/pii/S0021925820758540
Reference Ris Wihthout Link
- 31
Huntington JA,
Read RJ,
Carrell RW.
Structure of a serpin-protease complex shows inhibition by deformation. Nature 2000;
407 (6806) 923-926
Reference Ris Wihthout Link
- 32
Gettins PGW,
Olson ST.
Inhibitory serpins. New insights into their folding, polymerization, regulation and
clearance. Biochem J 2016; 473 (15) 2273-2293
Reference Ris Wihthout Link
- 33
Dewilde M,
Strelkov SV,
Rabijns A,
Declerck PJ.
High quality structure of cleaved PAI-1-stab. J Struct Biol 2009; 165 (02) 126-132
. Accessed September 11, 2025 at: https://www.sciencedirect.com/science/article/pii/S1047847708002670
Reference Ris Wihthout Link
- 34
Aertgeerts K,
De Bondt HL,
De Ranter CJ,
Declerck PJ.
Mechanisms contributing to the conformational and functional flexibility of plasminogen
activator inhibitor-1. Nat Struct Biol 1995; 2 (10) 891-897
Reference Ris Wihthout Link
- 35
Declerck PJ,
De Mol M,
Vaughan DE,
Collen D.
Identification of a conformationally distinct form of plasminogen activator inhibitor-1,
acting as a noninhibitory substrate for tissue-type plasminogen activator. J Biol
Chem 1992; 267 (17) 11693-11696
Reference Ris Wihthout Link
- 36
Urano T,
Strandberg L,
Johansson LB,
Ny T.
A substrate-like form of plasminogen-activator-inhibitor type 1. Conversions between
different forms by sodium dodecyl sulphate. Eur J Biochem 1992; 209 (03) 985-992
Reference Ris Wihthout Link
- 37
Audenaert AM,
Knockaert I,
Collen D,
Declerck PJ.
Conversion of plasminogen activator inhibitor-1 from inhibitor to substrate by point
mutations in the reactive-site loop. J Biol Chem 1994; 269 (30) 19559-19564
Reference Ris Wihthout Link
- 38
van Meijer M,
Smilde A,
Tans G,
Nesheim ME,
Pannekoek H,
Horrevoets AJG.
The suicide substrate reaction between plasminogen activator inhibitor 1 and thrombin
is regulated by the cofactors vitronectin and heparin. Blood 1997; 90 (05) 1874-1882
Reference Ris Wihthout Link
- 39
Lawrence DA,
Palaniappan S,
Stefansson S.
et al.
Characterization of the binding of different conformational forms of plasminogen activator
inhibitor-1 to vitronectin. Implications for the regulation of pericellular proteolysis.
J Biol Chem 1997; 272 (12) 7676-7680
Reference Ris Wihthout Link
- 40
Declerck PJ,
De Mol M,
Alessi MC.
et al.
Purification and characterization of a plasminogen activator inhibitor 1 binding protein
from human plasma. Identification as a multimeric form of S protein (vitronectin).
J Biol Chem 1988; 263 (30) 15454-15461 . Accessed September 11, 2025 at: https://www.sciencedirect.com/science/article/pii/S0021925819376100
Reference Ris Wihthout Link
- 41
Komissarov AA,
Andreasen PA,
Bødker JS,
Declerck PJ,
Anagli JY,
Shore JD.
Additivity in effects of vitronectin and monoclonal antibodies against α-helix F of
plasminogen activator inhibitor-1 on its reactions with target proteinases. J Biol
Chem 2005; 280 (02) 1482-1489
Reference Ris Wihthout Link
- 42
Preissner KT,
Grulich-Henn J,
Ehrlich HJ.
et al.
Structural requirements for the extracellular interaction of plasminogen activator
inhibitor 1 with endothelial cell matrix-associated vitronectin. J Biol Chem 1990;
265 (30) 18490-18498
Reference Ris Wihthout Link
- 43
Jung RG,
Simard T,
Labinaz A.
et al.
Role of plasminogen activator inhibitor-1 in coronary pathophysiology. Thromb Res
2018; 164: 54-62
Reference Ris Wihthout Link
- 44
Binder BR,
Christ G,
Gruber F.
et al.
Plasminogen activator inhibitor 1: physiological and pathophysiological roles. News
Physiol Sci 2002; 17: 56-61
Reference Ris Wihthout Link
- 45
Carrell RW,
Pemberton PA,
Boswell DR.
The serpins: evolution and adaptation in a family of protease inhibitors. Cold Spring
Harb Symp Quant Biol 1987; 52: 527-535
Reference Ris Wihthout Link
- 46
Strandberg L,
Lawrence D,
Ny T.
The organization of the human-plasminogen-activator-inhibitor-1 gene. Implications
on the evolution of the serine-protease inhibitor family. Eur J Biochem 1988; 176
(03) 609-616
Reference Ris Wihthout Link
- 47
Van De Craen B,
Declerck PJ,
Gils A.
The biochemistry, physiology and pathological roles of PAI-1 and the requirements
for PAI-1 inhibition in vivo. Thromb Res 2012; 130 (04) 576-585
Reference Ris Wihthout Link
- 48
Pannekoek H,
Veerman H,
Lambers H.
et al.
Endothelial plasminogen activator inhibitor (PAI): a new member of the Serpin gene
family. EMBO J 1986; 5 (10) 2539-2544
Reference Ris Wihthout Link
- 49
Ny T,
Sawdey M,
Lawrence D,
Millan JL,
Loskutoff DJ.
Cloning and sequence of a cDNA coding for the human beta-migrating endothelial-cell-type
plasminogen activator inhibitor. Proc Natl Acad Sci U S A 1986; 83 (18) 6776-6780
Reference Ris Wihthout Link
- 50
Ginsburg D,
Zeheb R,
Yang AY.
et al.
cDNA cloning of human plasminogen activator-inhibitor from endothelial cells. J Clin
Invest 1986; 78 (06) 1673-1680
Reference Ris Wihthout Link
- 51
Andreasen PA,
Riccio A,
Welinder KG.
et al.
Plasminogen activator inhibitor type-1: reactive center and amino-terminal heterogeneity
determined by protein and cDNA sequencing. FEBS Lett 1986; 209 (02) 213-218
Reference Ris Wihthout Link
- 52
Loskutoff DJ,
Linders M,
Keijer J,
Veerman H,
van Heerikhuizen H,
Pannekoek H.
Structure of the human plasminogen activator inhibitor 1 gene: nonrandom distribution
of introns. Biochemistry 1987; 26 (13) 3763-3768
Reference Ris Wihthout Link
- 53
Providence KM,
White LA,
Tang J,
Gonclaves J,
Staiano-Coico L,
Higgins PJ.
Epithelial monolayer wounding stimulates binding of USF-1 to an E-box motif in the
plasminogen activator inhibitor type 1 gene. J Cell Sci 2002; 115 (Pt 19): 3767-3777
Reference Ris Wihthout Link
- 54
Brown NJ,
Kim KS,
Chen YQ.
et al.
Synergistic effect of adrenal steroids and angiotensin II on plasminogen activator
inhibitor-1 production. J Clin Endocrinol Metab 2000; 85 (01) 336-344
Reference Ris Wihthout Link
- 55
van Zonneveld AJ,
Curriden SA,
Loskutoff DJ.
Type 1 plasminogen activator inhibitor gene: functional analysis and glucocorticoid
regulation of its promoter. Proc Natl Acad Sci U S A 1988; 85 (15) 5525-5529
Reference Ris Wihthout Link
- 56
Skurk T,
Lee YM,
Hauner H.
Angiotensin II and its metabolites stimulate PAI-1 protein release from human adipocytes
in primary culture. Hypertension 2001; 37 (05) 1336-1340
Reference Ris Wihthout Link
- 57
Eriksson P,
Nilsson L,
Karpe F,
Hamsten A.
Very-low-density lipoprotein response element in the promoter region of the human
plasminogen activator inhibitor-1 gene implicated in the impaired fibrinolysis of
hypertriglyceridemia. Arterioscler Thromb Vasc Biol 1998; 18 (01) 20-26
Reference Ris Wihthout Link
- 58
Pont F,
Duvillard L,
Florentin E,
Gambert P,
Vergès B.
Early kinetic abnormalities of apoB-containing lipoproteins in insulin-resistant women
with abdominal obesity. Arterioscler Thromb Vasc Biol 2002; 22 (10) 1726-1732
Reference Ris Wihthout Link
- 59
Chen YQ,
Su M,
Walia RR,
Hao Q,
Covington JW,
Vaughan DE.
Sp1 sites mediate activation of the plasminogen activator inhibitor-1 promoter by
glucose in vascular smooth muscle cells. J Biol Chem 1998; 273 (14) 8225-8231
Reference Ris Wihthout Link
- 60
Song C,
Burgess S,
Eicher JD,
O'Donnell CJ,
Johnson AD.
Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease.
J Am Heart Assoc 2017; 6 (06) e004918
Reference Ris Wihthout Link
- 61
Dennler S,
Itoh S,
Vivien D,
ten Dijke P,
Huet S,
Gauthier JM.
Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter
of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998; 17 (11) 3091-3100
Reference Ris Wihthout Link
- 62
Kunz C,
Pebler S,
Otte J,
von der Ahe D.
Differential regulation of plasminogen activator and inhibitor gene transcription
by the tumor suppressor p53. Nucleic Acids Res 1995; 23 (18) 3710-3717
Reference Ris Wihthout Link
- 63
Boekholdt SM,
Bijsterveld NR,
Moons AH,
Levi M,
Büller HR,
Peters RJ.
Genetic variation in coagulation and fibrinolytic proteins and their relation with
acute myocardial infarction: a systematic review. Circulation 2001; 104 (25) 3063-3068
Reference Ris Wihthout Link
- 64
Huang J,
Sabater-Lleal M,
Asselbergs FW.
et al;
DIAGRAM Consortium,
CARDIoGRAM Consortium,
C4D Consortium,
CARDIOGENICS Consortium.
Genome-wide association study for circulating levels of PAI-1 provides novel insights
into its regulation. Blood 2012; 120 (24) 4873-4881
Reference Ris Wihthout Link
- 65
Koch W,
Schrempf M,
Erl A.
et al.
4G/5G polymorphism and haplotypes of SERPINE1 in atherosclerotic diseases of coronary
arteries. Thromb Haemost 2010; 103 (06) 1170-1180
Reference Ris Wihthout Link
- 66
Brogren H,
Wallmark K,
Deinum J,
Karlsson L,
Jern S.
Platelets retain high levels of active plasminogen activator inhibitor 1. PLoS ONE
2011; 6 (11) e26762
Reference Ris Wihthout Link
- 67
Culej Bošnjak D,
Balent T,
Korać P,
Antica M,
Matulić M.
Urokinase plasminogen activation system modulation in transformed cell lines. Int
J Mol Sci 2025; 26 (02) 675
Reference Ris Wihthout Link
- 68
Ismail AA,
Shaker BT,
Bajou K.
The plasminogen-activator plasmin system in physiological and pathophysiological angiogenesis.
Int J Mol Sci 2021; 23 (01) 337
Reference Ris Wihthout Link
- 69
De Lorenzi V,
Sarra Ferraris GM,
Madsen JB,
Lupia M,
Andreasen PA,
Sidenius N.
Urokinase links plasminogen activation and cell adhesion by cleavage of the RGD motif
in vitronectin. EMBO Rep 2016; 17 (07) 982-998
Reference Ris Wihthout Link
- 70
Deng G,
Curriden SA,
Wang S,
Rosenberg S,
Loskutoff DJ.
Is plasminogen activator inhibitor-1 the molecular switch that governs urokinase receptor-mediated
cell adhesion and release?. J Cell Biol 1996; 134 (06) 1563-1571
Reference Ris Wihthout Link
- 71
Waltz DA,
Natkin LR,
Fujita RM,
Wei Y,
Chapman HA.
Plasmin and plasminogen activator inhibitor type 1 promote cellular motility by regulating
the interaction between the urokinase receptor and vitronectin. J Clin Invest 1997;
100 (01) 58-67
Reference Ris Wihthout Link
- 72
Kjøller L,
Kanse SM,
Kirkegaard T.
et al.
Plasminogen activator inhibitor-1 represses integrin- and vitronectin-mediated cell
migration independently of its function as an inhibitor of plasminogen activation.
Exp Cell Res 1997; 232 (02) 420-429
Reference Ris Wihthout Link
- 73
Kozlova N,
Jensen JK,
Chi TF,
Samoylenko A,
Kietzmann T.
PAI-1 modulates cell migration in a LRP1-dependent manner via β-catenin and ERK1/2.
Thromb Haemost 2015; 113 (05) 988-998
Reference Ris Wihthout Link
- 74
Binder BR,
Mihaly J,
Prager GW.
uPAR-uPA-PAI-1 interactions and signaling: a vascular biologist's view. Thromb Haemost
2007; 97 (03) 336-342
Reference Ris Wihthout Link
- 75
Miszta A,
Huskens D,
Donkervoort D,
Roberts MJM,
Wolberg AS,
de Laat B.
Assessing plasmin generation in health and disease. Int J Mol Sci 2021; 22 (05) 2758
. Accessed September 11, 2025 at: https://research.ebsco.com/linkprocessor/plink?id=5f2e7060-9f50-3319-a570-161dd7908acd
Reference Ris Wihthout Link
- 76
Mehic D,
Reitsma SE,
de Moreuil C.
et al.
Plasmin generation analysis in patients with bleeding disorder of unknown cause. Blood
Adv 2024; 8 (21) 5663-5673
Reference Ris Wihthout Link
- 77
Puster LO,
Stanley CB,
Uversky VN.
et al.
Characterization of an extensive interface on vitronectin for binding to plasminogen
activator inhibitor-1: Adoption of structure in an intrinsically disordered region.
Biochemistry 2019; 58 (51) 5117-5134
Reference Ris Wihthout Link
- 78
Kihn K,
Marchiori E,
Spagnolli G.
et al.
Long-range allostery mediates the regulation of plasminogen activator inhibitor-1
by cell adhesion factor vitronectin. J Biol Chem 2022; 298 (12) 102652
Reference Ris Wihthout Link
- 79
Czekay RP,
Aertgeerts K,
Curriden SA,
Loskutoff DJ.
Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating
integrins. J Cell Biol 2003; 160 (05) 781-791
Reference Ris Wihthout Link
- 80
Webb DJ,
Thomas KS,
Gonias SL.
Plasminogen activator inhibitor 1 functions as a urokinase response modifier at the
level of cell signaling and thereby promotes MCF-7 cell growth. J Cell Biol 2001;
152 (04) 741-752
Reference Ris Wihthout Link
- 81
Duffy MJ.
The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des 2004;
10 (01) 39-49
Reference Ris Wihthout Link
- 82
Høyer-Hansen G,
Rønne E,
Solberg H.
et al.
Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding
domain. J Biol Chem 1992; 267 (25) 18224-18229
Reference Ris Wihthout Link
- 83
Sidenius N,
Blasi F.
Domain 1 of the urokinase receptor (uPAR) is required for uPAR-mediated cell binding
to vitronectin. FEBS Lett 2000; 470 (01) 40-46
Reference Ris Wihthout Link
- 84
van Veen M,
Matas-Rico E,
van de Wetering K.
et al.
Negative regulation of urokinase receptor activity by a GPI-specific phospholipase
C in breast cancer cells. eLife 2017; 6: e23649
Reference Ris Wihthout Link
- 85
Fazioli F,
Resnati M,
Sidenius N,
Higashimoto Y,
Appella E,
Blasi F.
A urokinase-sensitive region of the human urokinase receptor is responsible for its
chemotactic activity. EMBO J 1997; 16 (24) 7279-7286
Reference Ris Wihthout Link
- 86
Bifulco K,
Votta G,
Ingangi V.
et al.
Urokinase receptor promotes ovarian cancer cell dissemination through its 84-95 sequence.
Oncotarget 2014; 5 (12) 4154-4169
Reference Ris Wihthout Link
- 87
Bifulco K,
Longanesi-Cattani I,
Franco P.
et al.
Single amino acid substitutions in the chemotactic sequence of urokinase receptor
modulate cell migration and invasion. PLoS ONE 2012; 7 (09) e44806
Reference Ris Wihthout Link
- 88
Degryse B,
Resnati M,
Rabbani SA,
Villa A,
Fazioli F,
Blasi F.
Src-dependence and pertussis-toxin sensitivity of urokinase receptor-dependent chemotaxis
and cytoskeleton reorganization in rat smooth muscle cells. Blood 1999; 94 (02) 649-662
Reference Ris Wihthout Link
- 89
Vial D,
McKeown-Longo PJ.
PAI1 stimulates assembly of the fibronectin matrix in osteosarcoma cells through crosstalk
between the alphavbeta5 and alpha5beta1 integrins. J Cell Sci 2008; 121 (Pt 10): 1661-1670
Reference Ris Wihthout Link
- 90
Sathyamoorthy M,
Matta P,
Vaughan DE.
Loss of PAI-1 through siRNA increases adhesion of monocytes to vitronectin. 2008
Reference Ris Wihthout Link
- 91
Sathyamoorthy M,
Matta P,
Vaughan DE.
PAI-1 deficiency enhances early outgrowth culture expanded and circulating endothelial
progenitor cells: Implications for the fibrinolytic system in stem cell biology. 2008
Reference Ris Wihthout Link
- 92
Kubala MH,
DeClerck YA.
The plasminogen activator inhibitor-1 paradox in cancer: a mechanistic understanding.
Cancer Metastasis Rev 2019; 38 (03) 483-492
Reference Ris Wihthout Link
- 93
McCann JV,
Xiao L,
Kim DJ.
et al.
Endothelial miR-30c suppresses tumor growth via inhibition of TGF-β-induced Serpine1.
J Clin Invest 2019; 129 (04) 1654-1670
Reference Ris Wihthout Link
- 94
Bajou K,
Masson V,
Gerard RD.
et al.
The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by
interaction with proteases, not vitronectin. Implications for antiangiogenic strategies.
J Cell Biol 2001; 152 (04) 777-784
Reference Ris Wihthout Link
- 95
Devy L,
Blacher S,
Grignet-Debrus C.
et al.
The pro- or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent.
FASEB J 2002; 16 (02) 147-154
Reference Ris Wihthout Link
- 96
Degryse B,
Neels JG,
Czekay RP,
Aertgeerts K,
Kamikubo Y,
Loskutoff DJ.
The low density lipoprotein receptor-related protein is a motogenic receptor for plasminogen
activator inhibitor-1. J Biol Chem 2004; 279 (21) 22595-22604
Reference Ris Wihthout Link
- 97
Lillis AP,
Van Duyn LB,
Murphy-Ullrich JE,
Strickland DK.
LDL receptor-related protein 1: unique tissue-specific functions revealed by selective
gene knockout studies. Physiol Rev 2008; 88 (03) 887-918
Reference Ris Wihthout Link
- 98
Czekay RP,
Loskutoff DJ.
Plasminogen activator inhibitors regulate cell adhesion through a uPAR-dependent mechanism.
J Cell Physiol 2009; 220 (03) 655-663
Reference Ris Wihthout Link
- 99
Gutierrez LS,
Schulman A,
Brito-Robinson T,
Noria F,
Ploplis VA,
Castellino FJ.
Tumor development is retarded in mice lacking the gene for urokinase-type plasminogen
activator or its inhibitor, plasminogen activator inhibitor-1. Cancer Res 2000; 60
(20) 5839-5847
Reference Ris Wihthout Link
- 100
Estreicher A,
Mühlhauser J,
Carpentier JL,
Orci L,
Vassalli JD.
The receptor for urokinase type plasminogen activator polarizes expression of the
protease to the leading edge of migrating monocytes and promotes degradation of enzyme
inhibitor complexes. J Cell Biol 1990; 111 (02) 783-792
Reference Ris Wihthout Link
- 101
Kamikubo Y,
Neels JG,
Degryse B.
Vitronectin inhibits plasminogen activator inhibitor-1-induced signalling and chemotaxis
by blocking plasminogen activator inhibitor-1 binding to the low-density lipoprotein
receptor-related protein. Int J Biochem Cell Biol 2009; 41 (03) 578-585
Reference Ris Wihthout Link
- 102
Hou SX,
Zheng Z,
Chen X,
Perrimon N.
The Jak/STAT pathway in model organisms: emerging roles in cell movement. Dev Cell
2002; 3 (06) 765-778
Reference Ris Wihthout Link
- 103
Czekay RP,
Wilkins-Port CE,
Higgins SP.
et al.
PAI-1: An integrator of cell signaling and migration. Int J Cell Biol 2011; 2011:
562481
Reference Ris Wihthout Link
- 104
Blasi F,
Carmeliet P.
uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 2002; 3 (12) 932-943
Reference Ris Wihthout Link
- 105
He Z,
Wang G,
Wu J,
Tang Z,
Luo M.
The molecular mechanism of LRP1 in physiological vascular homeostasis and signal transduction
pathways. Biomed Pharmacother 2021; 139: 111667
Reference Ris Wihthout Link
- 106
Ma Z,
Thomas KS,
Webb DJ.
et al.
Regulation of Rac1 activation by the low density lipoprotein receptor-related protein.
J Cell Biol 2002; 159 (06) 1061-1070
Reference Ris Wihthout Link
- 107
Koshelnick Y,
Ehart M,
Hufnagl P,
Heinrich PC,
Binder BR.
Urokinase receptor is associated with the components of the JAK1/STAT1 signaling pathway
and leads to activation of this pathway upon receptor clustering in the human kidney
epithelial tumor cell line TCL-598. J Biol Chem 1997; 272 (45) 28563-28567
Reference Ris Wihthout Link
- 108
Dumler I,
Weis A,
Mayboroda OA.
et al.
The Jak/Stat pathway and urokinase receptor signaling in human aortic vascular smooth
muscle cells. J Biol Chem 1998; 273 (01) 315-321
Reference Ris Wihthout Link
- 109
Dumler I,
Kopmann A,
Wagner K.
et al.
Urokinase induces activation and formation of Stat4 and Stat1-Stat2 complexes in human
vascular smooth muscle cells. J Biol Chem 1999; 274 (34) 24059-24065
Reference Ris Wihthout Link
- 110
Andreasen PA,
Kjøller L,
Christensen L,
Duffy MJ.
The urokinase-type plasminogen activator system in cancer metastasis: a review. Int
J Cancer 1997; 72 (01) 1-22
Reference Ris Wihthout Link
- 111
Hundsdorfer B,
Zeilhofer HF,
Bock KP,
Dettmar P,
Schmitt M,
Horch HH.
[The prognostic importance of urinase type plasminogen activators (uPA) and plasminogen
activator inhibitors (PAI-1) in the primary resection of oral squamous cell carcinoma].
Mund Kiefer Gesichtschir 2004; 8 (03) 173-179
Reference Ris Wihthout Link
- 112
Durand MKV,
Bødker JS,
Christensen A.
et al.
Plasminogen activator inhibitor-I and tumour growth, invasion, and metastasis. Thromb
Haemost 2004; 91 (03) 438-449
Reference Ris Wihthout Link
- 113
Kelly TE,
Spillane CL,
Ward MP.
et al.
Plasminogen activator inhibitor 1 is associated with high-grade serous ovarian cancer
metastasis and is reduced in patients who have received neoadjuvant chemotherapy.
Front Cell Dev Biol 2023; 11: 1150991
Reference Ris Wihthout Link
- 114
Chen SC,
Henry DO,
Reczek PR,
Wong MKK.
Plasminogen activator inhibitor-1 inhibits prostate tumor growth through endothelial
apoptosis. Mol Cancer Ther 2008; 7 (05) 1227-1236
Reference Ris Wihthout Link
- 115
Morita Y,
Hayashi Y,
Kanamaru T.
et al.
Inhibitory role of plasminogen activator inhibitor-1 in invasion and proliferation
of HLE hepatocellular carcinoma cells. Jpn J Cancer Res 1999; 90 (07) 747-752
Reference Ris Wihthout Link
- 116
Giacoia EG,
Miyake M,
Lawton A,
Goodison S,
Rosser CJ.
PAI-1 leads to G1-phase cell-cycle progression through cyclin D3/cdk4/6 upregulation.
Mol Cancer Res 2014; 12 (03) 322-334
Reference Ris Wihthout Link
- 117
Mashiko S,
Kitatani K,
Toyoshima M.
et al.
Inhibition of plasminogen activator inhibitor-1 is a potential therapeutic strategy
in ovarian cancer. Cancer Biol Ther 2015; 16 (02) 253-260
Reference Ris Wihthout Link
- 118
Li CF,
Kandel C,
Baliko F,
Nadesan P,
Brünner N,
Alman BA.
Plasminogen activator inhibitor-1 (PAI-1) modifies the formation of aggressive fibromatosis
(desmoid tumor). Oncogene 2005; 24 (09) 1615-1624
Reference Ris Wihthout Link
- 119
Vial D,
Monaghan-Benson E,
McKeown-Longo PJ.
Coordinate regulation of fibronectin matrix assembly by the plasminogen activator
system and vitronectin in human osteosarcoma cells. Cancer Cell Int 2006; 6: 8
Reference Ris Wihthout Link
- 120
McEachron TA,
Pawlinski R,
Richards KL,
Church FC,
Mackman N.
Protease-activated receptors mediate crosstalk between coagulation and fibrinolysis.
Blood 2010; 116 (23) 5037-5044
Reference Ris Wihthout Link
- 121
McEachron TA,
Church FC,
Mackman N.
Regulation of thrombin-induced plasminogen activator inhibitor-1 in 4T1 murine breast
cancer cells. Blood Coagul Fibrinolysis 2011; 22 (07) 576-582
Reference Ris Wihthout Link
- 122
Mazzieri R,
Blasi F.
The urokinase receptor and the regulation of cell proliferation. Thromb Haemost 2005;
93 (04) 641-646
Reference Ris Wihthout Link
- 123
Soeda S,
Shinomiya K,
Ochiai T.
et al.
Plasminogen activator inhibitor-1 aids nerve growth factor-induced differentiation
and survival of pheochromocytoma cells by activating both the extracellular signal-regulated
kinase and c-Jun pathways. Neuroscience 2006; 141 (01) 101-108
Reference Ris Wihthout Link
- 124
Kortlever RM,
Higgins PJ,
Bernards R.
Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction
of replicative senescence. Nat Cell Biol 2006; 8 (08) 877-884
Reference Ris Wihthout Link
- 125
Rana T,
Jiang C,
Banerjee S.
et al.
PAI-1 regulation of p53 expression and senescence in type II alveolar epithelial cells.
Cells 2023; 12 (15) 2008
Reference Ris Wihthout Link
- 126
Vaughan DE,
Rai R,
Khan SS,
Eren M,
Ghosh AK.
Plasminogen activator inhibitor-1 is a marker and a mediator of senescence. Arterioscler
Thromb Vasc Biol 2017; 37 (08) 1446-1452
Reference Ris Wihthout Link
- 127
Aguirre-Ghiso JA,
Estrada Y,
Liu D,
Ossowski L.
ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK).
Cancer Res 2003; 63 (07) 1684-1695
Reference Ris Wihthout Link
- 128
Beaulieu LM,
Whitley BR,
Wiesner TF.
et al.
Breast cancer and metabolic syndrome linked through the plasminogen activator inhibitor-1
cycle. BioEssays 2007; 29 (10) 1029-1038
Reference Ris Wihthout Link
- 129
Schneider DJ,
Chen Y,
Sobel BE.
The effect of plasminogen activator inhibitor type 1 on apoptosis. Thromb Haemost
2008; 100 (06) 1037-1040
Reference Ris Wihthout Link
- 130
Fang H,
Placencio VR,
DeClerck YA.
Protumorigenic activity of plasminogen activator inhibitor-1 through an antiapoptotic
function. J Natl Cancer Inst 2012; 104 (19) 1470-1484
Reference Ris Wihthout Link
- 131
Valiente M,
Obenauf AC,
Jin X.
et al.
Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell
2014; 156 (05) 1002-1016
Reference Ris Wihthout Link
- 132
Kwaan HC,
McMahon B.
The role of plasminogen-plasmin system in cancer. Cancer Treat Res 2009; 148: 43-66
Reference Ris Wihthout Link
- 133
Balsara RD,
Ploplis VA.
Plasminogen activator inhibitor-1: the double-edged sword in apoptosis. Thromb Haemost
2008; 100 (06) 1029-1036
Reference Ris Wihthout Link
- 134
Balsara RD,
Castellino FJ,
Ploplis VA.
A novel function of plasminogen activator inhibitor-1 in modulation of the AKT pathway
in wild-type and plasminogen activator inhibitor-1-deficient endothelial cells. J
Biol Chem 2006; 281 (32) 22527-22536
Reference Ris Wihthout Link
- 135
Alfano D,
Iaccarino I,
Stoppelli MP.
Urokinase signaling through its receptor protects against anoikis by increasing BCL-xL
expression levels. J Biol Chem 2006; 281 (26) 17758-17767
Reference Ris Wihthout Link
- 136
Tsuruta F,
Masuyama N,
Gotoh Y.
The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation
to mitochondria. J Biol Chem 2002; 277 (16) 14040-14047
Reference Ris Wihthout Link
- 137
Balsara RD,
Xu Z,
Ploplis VA.
Targeting plasminogen activator inhibitor-1: role in cell signaling and the biology
of domain-specific knock-in mice. Curr Drug Targets 2007; 8 (09) 982-995
Reference Ris Wihthout Link
- 138
Cajot JF,
Bamat J,
Bergonzelli GE.
et al.
Plasminogen-activator inhibitor type 1 is a potent natural inhibitor of extracellular
matrix degradation by fibrosarcoma and colon carcinoma cells. Proc Natl Acad Sci U
S A 1990; 87 (18) 6939-6943
Reference Ris Wihthout Link
- 139
Alizadeh H,
Ma D,
Berman M.
et al.
Tissue-type plasminogen activator-induced invasion and metastasis of murine melanomas.
Curr Eye Res 1995; 14 (06) 449-458
Reference Ris Wihthout Link
- 140
Bajou K,
Maillard C,
Jost M.
et al.
Host-derived plasminogen activator inhibitor-1 (PAI-1) concentration is critical for
in vivo tumoral angiogenesis and growth. Oncogene 2004; 23 (41) 6986-6990
Reference Ris Wihthout Link
- 141
Chen H,
Peng H,
Liu W.
et al.
Silencing of plasminogen activator inhibitor-1 suppresses colorectal cancer progression
and liver metastasis. Surgery 2015; 158 (06) 1704-1713
Reference Ris Wihthout Link
- 142
Kwaan HC,
Mazar AP,
McMahon BJ.
The apparent uPA/PAI-1 paradox in cancer: more than meets the eye. Semin Thromb Hemost
2013; 39 (04) 382-391
Reference Ris Wihthout Link
- 143
Bajou K,
Peng H,
Laug WE.
et al.
Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis.
Cancer Cell 2008; 14 (04) 324-334
Reference Ris Wihthout Link
- 144
Olander JV,
Bremer ME,
Marasa JC,
Feder J.
Fibrin-enhanced endothelial cell organization. J Cell Physiol 1985; 125 (01) 1-9
Reference Ris Wihthout Link
- 145
Qi J,
Goralnick S,
Kreutzer DL.
Fibrin regulation of interleukin-8 gene expression in human vascular endothelial cells.
Blood 1997; 90 (09) 3595-3602
Reference Ris Wihthout Link
- 146
Inoue M,
Sawada T,
Uchima Y.
et al.
Plasminogen activator inhibitor-1 (PAI-1) gene transfection inhibits the liver metastasis
of pancreatic cancer by preventing angiogenesis. Oncol Rep 2005; 14 (06) 1445-1451
Reference Ris Wihthout Link
- 147
Marshall LJ,
Ramdin LSP,
Brooks T,
DPhil PC,
Shute JK.
Plasminogen activator inhibitor-1 supports IL-8-mediated neutrophil transendothelial
migration by inhibition of the constitutive shedding of endothelial IL-8/heparan sulfate/syndecan-1
complexes. J Immunol 2003; 171 (04) 2057-2065
Reference Ris Wihthout Link
- 148
Kubala MH,
Punj V,
Placencio-Hickok VR.
et al.
Plasminogen activator inhibitor-1 promotes the recruitment and polarization of macrophages
in cancer. Cell Rep 2018; 25 (08) 2177-2191.e7
Reference Ris Wihthout Link
