RSS-Feed abonnieren
DOI: 10.1055/a-2696-3364
Ein Konsensus der Deutschsprachigen Arbeitsgemeinschaft für Mikrochirurgie (DAM): Stellenwert und Potential der Robotischen Mikrochirurgie
A consensus statement of the German Speaking Society for Reconstructive Microsurgery (GSRM): role and potential of robotic microsurgeryAuthors

Zusammenfassung
Fragestellungen
Im Rahmen eines Konsensus-Workshops wurden folgende zentrale Fragen zur zukünftigen robotischen Mikrochirurgie diskutiert: • Welche funktionellen und ergonomischen Anforderungen werden an Hardwarekomponenten zukünftiger Systeme gestellt? • Welche Anforderungen bestehen an die Softwarefunktionalität und Systemintegration? • Welche übergreifenden Eigenschaften muss ein robotisches Mikrochirurgiesystem erfüllen, um eine breite Akzeptanz in der klinischen Praxis zu finden?
Methodik
Basierend auf der aktuellen Literatur wurden die oben genannten Fragen im Rahmen eines Expertenworkshops der Deutschsprachigen Arbeitsgemeinschaft für Mikrochirurgie (DAM) 2024 in Aachen diskutiert. Ziel war die strukturierte Ableitung von Empfehlungen für zukünftige robotische Mikrochirurgiesysteme aus Sicht der Anwender. Antworten der Konsensgruppe: Die Teilnehmenden formulierten als Anforderungen an zukünftige Systeme: • Eine Verbesserung der Hardwarekomponenten hinsichtlich Funktionalität, Ergonomie und Modularität, inklusive kabelloser und platzsparender Bauweise. • Eine benutzerfreundliche Software mit intuitiver Steuerung, fließender Skalierung, Sicherheitsfunktionen und Kompatibilität mit Kliniksystemen. • Eine Ausweitung der Anwendungsbereiche, Nachhaltigkeit der Materialien und Integration neuer Technologien wie Augmented Reality und Künstlicher Intelligenz.
Abstract
Key Questions
As part of a consensus workshop, the following key questions regarding the future of robotic microsurgery were discussed: • What functional and ergonomic requirements should future robotic microsurgery systems meet with respect to their hardware components? • What capabilities are expected of the software in terms of usability and integration into existing hospital systems? • What overarching characteristics must a robotic microsurgical system offer to gain widespread acceptance in clinical practice?
Methodology
Based on a review of the current literature, the above questions were discussed during an expert consensus workshop held by the German Speaking Society for Reconstructive Microsurgery (GSRM) in 2024 in Aachen. The aim was to derive structured, user-centred recommendations for future robotic microsurgical systems. Answers of the Consensus Group: The participants defined the following core requirements for future systems: • Enhanced hardware functionality, ergonomics, and modular design–including wireless, space-saving configurations. • User-friendly software with intuitive operation, smooth scaling, integrated safety functions, and compatibility with clinical IT systems. • Expansion of application areas, sustainability of materials, and integration of emerging technologies such as augmented reality and artificial intelligence.
Schlüsselwörter
Robotische Mikrochirurgie - Plastische Chirurgie - Rekonstruktive Chirurgie - HandchirurgiePublikationsverlauf
Eingereicht: 26. Mai 2025
Angenommen: 27. August 2025
Artikel online veröffentlicht:
21. Oktober 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Hong JPJ, Song S, Suh HSP. Supermicrosurgery: Principles and applications. J Surg Oncol 2018; 118: 832-839
- 2 Ballestín A, Malzone G, Menichini G. et al. New Robotic System with Wristed Microinstruments Allows Precise Reconstructive Microsurgery: Preclinical Study. Ann Surg Oncol 2022; 29: 7859-7867
- 3 van Mulken TJM, Boymans C, Schols RM. et al. Preclinical Experience Using a New Robotic System Created for Microsurgery. Plast Reconstr Surg 2018; 142: 1367-1376
- 4 van Mulken TJM, Schols RM, Qiu SS. et al. Robotic (super) microsurgery: Feasibility of a new master-slave platform in an in vivo animal model and future directions. J Surg Oncol 2018; 118: 826-831
- 5 Micorusure. MUSA-2. In
- 6 van Mulken TJM, Schols RM, Scharmga AMJ. et al. First-in-human robotic supermicrosurgery using a dedicated microsurgical robot for treating breast cancer-related lymphedema: a randomized pilot trial. Nat Commun 2020; 11: 757
- 7 Katz RD, Rosson GD, Taylor JA. et al. Robotics in microsurgery: use of a surgical robot to perform a free flap in a pig. Microsurgery 2005; 25: 566-569
- 8 Selber JC. Transoral robotic reconstruction of oropharyngeal defects: a case series. Plast Reconstr Surg 2010; 126: 1978-1987
- 9 Selber JC, Baumann DP, Holsinger FC. Robotic latissimus dorsi muscle harvest: a case series. Plast Reconstr Surg 2012; 129: 1305-1312
- 10 Pedersen J, Song DH, Selber JC. Robotic, intraperitoneal harvest of the rectus abdominis muscle. Plast Reconstr Surg 2014; 134: 1057-1063
- 11 Sert G, Yıldızdal S, Güdeloğlu A. et al. Robotic harvest of the free gracilis muscle flap. J Plast Reconstr Aesthet Surg 2024; 90: 323-325
- 12 Daar DA, Anzai LM, Vranis NM. et al. Robotic deep inferior epigastric perforator flap harvest in breast reconstruction. Microsurgery 2022; 42: 319-325
- 13 Jung JH, Jeon YR, Lee DW. et al. Initial report of extraperitoneal pedicle dissection in deep inferior epigastric perforator flap breast reconstruction using the da Vinci SP. Arch Plast Surg 2022; 49: 34-38
- 14 Cheon JH, Kim HE, Park SH. et al. Ten-year experience of robotic latissimus muscle flap reconstructive surgery at a single institution. J Plast Reconstr Aesthet Surg 2022; 75: 3664-3672
- 15 Murariu D, Chen B, Bailey E. et al. Transabdominal Robotic Harvest of Bilateral DIEP Pedicles in Breast Reconstruction: Technique and Interdisciplinary Approach. J Reconstr Microsurg 2024; 41: 369-375
- 16 Chung JH, You HJ, Kim HS. et al. A novel technique for robot assisted latissimus dorsi flap harvest. J Plast Reconstr Aesthet Surg 2015; 68: 966-972
- 17 Hohenstein AA, Kraus D, Zeller J. et al. [Robotic-Assisted DIEP Flap Harvest for Autologous Breast Reconstruction: Case Report, Technical Aspects and Identification of Suitable Patients]. Handchir Mikrochir Plast Chir 2024; 56: 147-155
- 18 Lai C-S, Lu C-T, Liu S-A. et al. Robot-assisted microvascular anastomosis in head and neck free flap reconstruction: Preliminary experiences and results. Microsurgery 2019; 39: 715-720
- 19 Malzone G, Menichini G, Innocenti M. et al. Microsurgical robotic system enables the performance of microvascular anastomoses: a randomized in vivo preclinical trial. Sci Rep 2023; 13: 14003
- 20 Innocenti M, Malzone G, Menichini G. First-in-Human Free Flap Tissue Reconstruction Using a Dedicated Microsurgical Robotic Platform. Plast Reconstr Surg 2023; 151: 1078-1082
- 21 Beier JP, Hackenberg S, Boos AM. et al. First Series of Free Flap Reconstruction Using a Dedicated Robotic System in a Multidisciplinary Microsurgical Center. Plast Reconstr Surg Glob Open 2023; 11: e5240
- 22 von Reibnitz D, Weinzierl A, Barbon C. et al. 100 anastomoses: a two-year single-center experience with robotic-assisted micro- and supermicrosurgery for lymphatic reconstruction. J Robot Surg 2024; 18: 164
- 23 Schäfer B, Bahm J, Beier JP. Nerve Transfers Using a Dedicated Microsurgical Robotic System. Plast Reconstr Surg Glob Open 2023; 11: e5192
- 24 Vollbach FH, Bigdeli AK, Struebing F. et al. Using a Microsurgical Robotic Platform for In-flap Anastomosis in Autologous Bipedicular Breast Reconstruction. Plast Reconstr Surg Glob Open 2024; 12: e5511
- 25 Dastagir N, Obed D, Tamulevicius M. et al. The Use of the Symani Surgical System® in Emergency Hand Trauma Care. Surg Innov 2024; 31: 460-465
- 26 Grünherz L, Reibnitz D, Lindenblatt N. Robotisch-assistierte Lymphchirurgie. Handchir Mikrochir Plast Chir 2024; 56: 122-127
- 27 Struebing F, Boecker A, Vollbach F. et al. Robot-assisted microsurgery: a single-center experience of 100 cases. J Robot Surg 2024; 19: 28
- 28 Gorji S, Wessel K, Dermietzel A. et al. Fully Telemetric Robotic Microsurgery: Clinical Experience With 23 Cases. Microsurgery 2024; 44: e31227
- 29 Aman M, Struebing F, Weigel J. et al. Technical Strategies and Learning Curve in Robotic-assisted Peripheral Nerve Surgery. Plast Reconstr Surg Glob Open 2024; 12: e6221
- 30 Guillaume VGJ, Ammo T, Leypold S. et al. Comparison of Biomechanical and Histopathological Properties of Robot-Assisted Anastomoses Using the Symani Surgical System® versus Conventional Anastomoses in a Preclinical Microsurgical Model. J Reconstr Microsurg 2025;
- 31 MMI. Symani Surgical System. In 2024
- 32 Brown H, Brown RA, Lenkiu L. et al. Robotic-assisted Supermicrosurgery in Plastic Surgery: A Systematic Literature Review. Plast Reconstr Surg Glob Open 2025; 13: e6912
- 33 Microsure. MUSA-3. In 2024
- 34 Sony. Sony Develops Proprietary Microsurgery Assistance Robot. In 2024
- 35 Struebing F, Kneser U, Bigdeli A. et al. Ergonomic Considerations in Robotic-assisted Microsurgery. J Craniofac Surg 2025; 36: 349-353
