Subscribe to RSS
DOI: 10.1055/a-2654-0734
Lifestyle und CKD
Präventive Strategien durch Ernährung, Bewegung und UmweltschutzAuthors
Zusammenfassung
Im medizinischen Kontext bezeichnet der Begriff „Lifestyle“ Verhaltensweisen, die sich positiv oder negativ auf die Gesundheit auswirken können. Chronische Nierenkrankheiten (CKD: Chronic Kidney Disease) stellen weltweit ein wachsendes Gesundheitsproblem dar. Neben den bekannten Risikofaktoren wie arterielle Hypertonie, Diabetes mellitus, Adipositas und genetischer Prädisposition rücken zunehmend Umweltfaktoren und Aspekte des modernen Lebensstils in den Fokus von Forschung und Prävention. Unsere Ernährung nimmt unter anderem über das Mikrobiom maßgeblich Einfluss auf die Progression einer CKD. Bewegungsmuster im Alltag und Sport wirken sich auf die Nierenfunktion aus. Unsere Mobilitätsgewohnheiten und unser Konsumverhalten sind zusätzlich eng mit der Belastung der Umwelt durch Feinstaub verknüpft. Umweltfaktoren spielen eine bislang unterschätzte Rolle in der Pathogenese der CKD. Dieser Artikel beschreibt die Zusammenhänge zwischen Lebensstil und CKD und eröffnet Handlungsspielräume mit einem Fokus auf Prävention und Nephroprotektion.
Publication History
Article published online:
11 December 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Zhou X, Jiang C, Song B. et al. Association between dietary index for gut microbiota and chronic kidney disease: A cross-sectional study from U. S. population. Prev Med Rep 2025; 53: 103060
- 2 He LQ, Wu XH, Huang YQ. et al. Dietary patterns and chronic kidney disease risk: a systematic review and updated meta-analysis of observational studies. Nutr J 2021; 20: 4
- 3 Xiao Y, Yang Y, Gao S. et al. Dietary index for gut microbiota, a novel protective factor for the prevalence of chronic kidney diseases in the adults: insight from NHANES 2007–2018. Front Nutr 2025; 12: 1561235
- 4 Liu X, Shen Y, Zhu K. et al. The association between dietary live microbe intake and risk of chronic kidney disease among US adults: a cross-sectional survey from NHANES (2001–2018). Ren Fail 2025; 47: 2488236
- 5 Hou YC, Tseng KH, Tzeng IS. et al. Plant-Based Diet Mitigated the Risk of Chronic Kidney Disease in Overweight Individuals. Ann Nutr Metab 2025; 1-10
- 6 Maroto-Rodriguez J, Ortola R, Cabanas-Sanchez V. et al. Diet quality patterns and chronic kidney disease incidence: a UK Biobank cohort study. Am J Clin Nutr 2025; 121: 445-453
- 7 Palmer SC, Maggo JK, Campbell KL. et al. Dietary interventions for adults with chronic kidney disease. Cochrane Database Syst Rev 2017; 4: CD011998
- 8 Ong KL, Marklund M, Huang L. et al. Association of omega 3 polyunsaturated fatty acids with incident chronic kidney disease: pooled analysis of 19 cohorts. BMJ 2023; 380: e072909
- 9 Cuevas-Sierra A, Milagro FI, Aranaz P. et al. Gut Microbiota Differences According to Ultra-Processed Food Consumption in a Spanish Population. Nutrients 2021; 13: 2710
- 10 Du S, Kim H, Crews DC. et al. Association Between Ultraprocessed Food Consumption and Risk of Incident CKD: A Prospective Cohort Study. Am J Kidney Dis 2022; 80 589–598.e1
- 11 Whelan K, Bancil AS, Lindsay JO. et al. Ultra-processed foods and food additives in gut health and disease. Nat Rev Gastroenterol Hepatol 2024; 21: 406-427
- 12 Mills S, Stanton C, Lane JA. et al. Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients 2019; 11: 923
- 13 Magliocca G, Mone P, Di Iorio BR. et al. Short-Chain Fatty Acids in Chronic Kidney Disease: Focus on Inflammation and Oxidative Stress Regulation. Int J Mol Sci 2022; 23: 5354
- 14 Van Hul M, Cani PD. Targeting Carbohydrates and Polyphenols for a Healthy Microbiome and Healthy Weight. Curr Nutr Rep 2019; 8: 307-316
- 15 Vandecruys M, De Smet S, De Beir J. et al. Revitalizing the Gut Microbiome in Chronic Kidney Disease: A Comprehensive Exploration of the Therapeutic Potential of Physical Activity. Toxins (Basel) 2024; 16: 242
- 16 Matsumoto T, Kojima M, Takayanagi K. et al. Role of S-Equol, Indoxyl Sulfate, and Trimethylamine N-Oxide on Vascular Function. Am J Hypertens 2020; 33: 793-803
- 17 Huang Z, Boekhorst J, Fogliano V. et al. Impact of High-Fiber or High-Protein Diet on the Capacity of Human Gut Microbiota To Produce Tryptophan Catabolites. J Agric Food Chem 2023; 71: 6956-6966
- 18 Adeva-Andany MM, Fernandez-Fernandez C, Carneiro-Freire N. et al. The differential effect of animal versus vegetable dietary protein on the clinical manifestations of diabetic kidney disease in humans. Clin Nutr ESPEN 2022; 48: 21-35
- 19 Molina P, Gavela E, Vizcaino B. et al. Optimizing Diet to Slow CKD Progression. Front Med (Lausanne) 2021; 8: 654250
- 20 Shi H, Su X, Li C. et al. Effect of a low-salt diet on chronic kidney disease outcomes: a systematic review and meta-analysis. BMJ Open 2022; 12: e050843
- 21 Wang C, Huang Z, Yu K. et al. High-Salt Diet Has a Certain Impact on Protein Digestion and Gut Microbiota: A Sequencing and Proteome Combined Study. Front Microbiol 2017; 8: 1838
- 22 Kidney Disease: Improving Global Outcomes CKDWG. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int 2024; 105: S117-S314
- 23 Ikizler TA, Burrowes JD, Byham-Gray LD. et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am J Kidney Dis 2020; 76: S1-S107
- 24 Vervloet MG, Sezer S, Massy ZA. et al. The role of phosphate in kidney disease. Nat Rev Nephrol 2017; 13: 27-38
- 25 Favero C, Carriazo S, Cuarental L. et al. Phosphate, Microbiota and CKD. Nutrients 2021; 13: 1273
- 26 Marrone G, Urciuoli S, Di Lauro M. et al. Extra Virgin Olive Oil and Cardiovascular Protection in Chronic Kidney Disease. Nutrients 2022; 14: 4265
- 27 Malheiro LFL, Fernandes MM, Oliveira CA. et al. Renoprotective mechanisms of exercise training against acute and chronic renal diseases – A perspective based on experimental studies. Life Sci 2024; 346: 122628
- 28 Valenzuela PL, Castillo-Garcia A, Saco-Ledo G. et al. Physical exercise: a polypill against chronic kidney disease. Nephrol Dial Transplant 2024; 39: 1384-1391
- 29 Seidu S, Abdool M, Almaqhawi A. et al. Physical activity and risk of chronic kidney disease: systematic review and meta-analysis of 12 cohort studies involving 1,281,727 participants. Eur J Epidemiol 2023; 38: 267-280
- 30 Kelly JT, Su G, Zhang L. et al. Modifiable Lifestyle Factors for Primary Prevention of CKD: A Systematic Review and Meta-Analysis. J Am Soc Nephrol 2021; 32: 239-253
- 31 Gollie JM, Cohen SD, Patel SS. Physical Activity and Exercise for Cardiorespiratory Health and Fitness in Chronic Kidney Disease. Rev Cardiovasc Med 2022; 23: 273
- 32 Baiao VM, Cunha VA, Duarte MP. et al. Effects of Exercise on Inflammatory Markers in Individuals with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Metabolites 2023; 13: 795
- 33 Fan R, Kong J, Zhang J. et al. Exercise as a therapeutic approach to alleviate diabetic kidney disease: mechanisms, clinical evidence and potential exercise prescriptions. Front Med (Lausanne) 2024; 11: 1471642
- 34 Bishop NC, Burton JO, Graham-Brown MPM. et al. Exercise and chronic kidney disease: potential mechanisms underlying the physiological benefits. Nat Rev Nephrol 2023; 19: 244-256
- 35 Pozzato M, Parodi G, Rossi D. et al. Fitwalking: A New Frontier for Kidney Patients – A Center’s Experience. Kidney Blood Press Res 2024; 49: 443-456
- 36 Anding-Rost K, von Gersdorff G, von Korn P. et al. Exercise during Hemodialysis in Patients with Chronic Kidney Failure. NEJM Evid 2023; 2 EVIDoa2300057
- 37 Brook RD, Rajagopalan S, Pope 3rd CA. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010; 121: 2331-2378
- 38 World Health Organization W. Ambient (outdoor) air pollution. Im Internet: Accessed September 01, 2025 at: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
- 39 Collaborators GBDRF. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024; 403: 2162-2203
- 40 Clappier A, Thunis P, Beekmann M. et al. Impact of SO(x), NO(x) and NH(3) emission reductions on PM(2.5) concentrations across Europe: Hints for future measure development. Environ Int 2021; 156: 106699
- 41 Liu M, Gao M, Hu D. et al. Prolonged exposure to air pollution and risk of acute kidney injury and related mortality: a prospective cohort study based on hospitalized AKI cases and general population controls from the UK Biobank. BMC Public Health 2024; 24: 2911
- 42 Peng S, Lu T, Liu Y. et al. Short-term exposure to fine particulate matter and its constituents may affect renal function via oxidative stress: A longitudinal panel study. Chemosphere 2022; 293: 133570
- 43 Hou T, Jiang Y, Zhang J. et al. Kidney Injury Evoked by Fine Particulate Matter: Risk Factor, Causation, Mechanism and Intervention Study. Adv Sci (Weinh) 2024; 11: e2403222
- 44 Wang K, Lei L, Li G. et al. Association between Ambient Particulate Air Pollution and Soluble Biomarkers of Endothelial Function: A Meta-Analysis. Toxics 2024; 12: 76
- 45 Yi J, Kim SH, Lee H. et al. Air quality and kidney health: Assessing the effects of PM(10), PM(2.5), CO, and NO(2) on renal function in primary glomerulonephritis. Ecotoxicol Environ Saf 2024; 281: 116593
- 46 Xu X, Wang G, Chen N. et al. Long-Term Exposure to Air Pollution and Increased Risk of Membranous Nephropathy in China. J Am Soc Nephrol 2016; 27: 3739-3746
- 47 Yao H, Lv J. Statin Attenuated Myocardial Inflammation Induced by PM2.5 in Rats. Acta Cardiol Sin 2017; 33: 637-645
- 48 Kim K, Jeong S, Choi S. et al. Cardiovascular benefit of statin use against air pollutant exposure in older adults. Eur J Prev Cardiol 2025; 32: 288-298
