Subscribe to RSS
DOI: 10.1055/a-2650-7678
Invasive Endotyping of Angina Pectoris with Nonobstructive Coronary Arteries
Funding The Ministry of Health in the Czech Republic—conceptual development of research organization—Motol University Hospital, Prague, Czech Republic, supported this work (00064203). Petr Kala is supported by the Ministry of Health of the Czech Republic (grant number: NU23J-02-00015).

Abstract
Patients with chest pain are frequently diagnosed with angina pectoris with nonobstructive coronary arteries (ANOCA). The pathophysiology mainly involves the following mechanisms: structural or functional impairment of the microcirculation, functional impairment of the epicardial arteries, or a combination of both. This review describes the diagnosis of ANOCA, focusing on comprehensive coronary functional testing, resulting in more accurate endotyping and subsequent targeted treatment. It also determines the theoretical basis and practical aspects with graphic examples of the examination.
Keywords
angina with nonobstructive coronary artery disease - comprehensive coronary functional testing - coronary microcirculation - microvascular angina - vasospastic angina - coronary thermodilution - acetylcholine testingPublication History
Article published online:
08 August 2025
© 2025. International College of Angiology. This article is published by Thieme.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Vrints C, Andreotti F, Koskinas KC. et al; ESC Scientific Document Group. 2024 ESC guidelines for the management of chronic coronary syndromes. Eur Heart J 2024; 45 (36) 3415-3537
- 2 Shimokawa H, Suda A, Takahashi J. et al. Clinical characteristics and prognosis of patients with microvascular angina: an international and prospective cohort study by the Coronary Vasomotor Disorders International Study (COVADIS) Group. Eur Heart J 2021; 42 (44) 4592-4600
- 3 Odanovic N, Schwann A, Zhang Z. et al. Long-term outcomes of patients with ischemia and no obstructive coronary artery disease (INOCA) - a systematic review and meta-analysis. Eur Heart J 2023 44.
- 4 Smilowitz NR, Toleva O, Chieffo A, Perera D, Berry C. Coronary microvascular disease in contemporary clinical practice. Circ Cardiovasc Interv 2023; 16 (06) e012568
- 5 Kunadian V, Chieffo A, Camici PG. et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on coronary pathophysiology & microcirculation endorsed by Coronary Vasomotor Disorders International Study Group. Eur Heart J 2020; 41 (37) 3504-3520
- 6 Aribas E, Roeters van Lennep JE, Elias-Smale SE. et al. Prevalence of microvascular angina among patients with stable symptoms in the absence of obstructive coronary artery disease: a systematic review. Cardiovasc Res 2022; 118 (03) 763-771
- 7 Jespersen L, Hvelplund A, Abildstrøm SZ. et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J 2012; 33 (06) 734-744
- 8 Lee SH, Shin D, Lee JM. et al; ILIAS Registry Investigators †. Clinical relevance of ischemia with nonobstructive coronary arteries according to coronary microvascular dysfunction. J Am Heart Assoc 2022; 11 (09) e025171
- 9 Kala P, Adlová R, Gašpárková V, Ošťádal P, Hájek P. Continuous thermodilution - a novel method for direct measurement of coronary flow and resistance. Cor Vasa 2025; 67: 35-42
- 10 de Vos A, Jansen TPJ, van 't Veer M. et al. Microvascular resistance reserve to assess microvascular dysfunction in ANOCA patients. JACC Cardiovasc Interv 2023; 16 (04) 470-481
- 11 Boerhout CKM, de Waard GA, Lee JM. et al. Prognostic value of structural and functional coronary microvascular dysfunction in patients with non-obstructive coronary artery disease; from the multicentre international ILIAS registry. EuroIntervention 2022; 18 (09) 719-728
- 12 Ford TJ, Stanley B, Good R. et al. Stratified Medical therapy using invasive coronary function testing in angina: the CorMicA trial. J Am Coll Cardiol 2018; 72 (23 Pt A): 2841-2855
- 13 Ford TJ, Stanley B, Sidik N. et al. 1-year outcomes of angina management guided by invasive coronary function testing (CorMicA). JACC Cardiovasc Interv 2020; 13 (01) 33-45
- 14 Fournier S, Keulards DCJ, van't Veer M. et al. Normal values of thermodilution-derived absolute coronary blood flow and microvascular resistance in humans. EuroIntervention 2021; 17 (04) e309-e316
- 15 Candreva A, Gallinoro E, van't Veer M. et al. Basics of coronary thermodilution. JACC Cardiovasc Interv 2021; 14 (06) 595-605
- 16 Mejia-Renteria H, Shabbir A, Nuñez-Gil IJ. et al. Feasibility and improved diagnostic yield of intracoronary adenosine to assess microvascular dysfunction with bolus thermodilution. J Am Heart Assoc 2024; 13 (22) e035404
- 17 Jansen TPJ, de Vos A, Paradies V. et al. Continuous versus bolus thermodilution-derived coronary flow reserve and microvascular resistance reserve and their association with angina and quality of life in patients with angina and nonobstructive coronaries: a head-to-head comparison. J Am Heart Assoc 2023; 12 (16) e030480
- 18 Bastiany A, Pacheco C, Sedlak T. et al. A practical approach to invasive testing in ischemia with no obstructive coronary arteries (INOCA). CJC Open 2022; 4 (08) 709-720
- 19 De Bruyne B, Pijls NHJ, Gallinoro E. et al. Microvascular resistance reserve for assessment of coronary microvascular function: JACC technology corner. J Am Coll Cardiol 2021; 78 (15) 1541-1549
- 20 De Bruyne B, Adjedj J, Xaplanteris P. et al. Saline-induced coronary hyperemia: mechanisms and effects on left ventricular function. Circ Cardiovasc Interv 2017; 10 (04) e004719
- 21 Adjedj J, Picard F, Collet C. et al. Intracoronary saline-induced hyperemia during coronary thermodilution measurements of absolute coronary blood flow: an animal mechanistic study. J Am Heart Assoc 2020; 9 (15) e015793
- 22 Gallinoro E, Candreva A, Fernandez-Peregrina E. et al. Saline-induced coronary hyperemia with continuous intracoronary thermodilution is mediated by intravascular hemolysis. Atherosclerosis 2022; 352: 46-52
- 23 Gallinoro E, Candreva A, Colaiori I. et al. Thermodilution-derived volumetric resting coronary blood flow measurement in humans. EuroIntervention 2021; 17 (08) e672-e679
- 24 Keulards DCJ, Van't Veer M, Zelis JM. et al. Safety of absolute coronary flow and microvascular resistance measurements by thermodilution. EuroIntervention 2021; 17 (03) 229-232
- 25 Kodeboina M, Nagumo S, Munhoz D. et al. Simplified assessment of the index of microvascular resistance. J Interv Cardiol 2021;
- 26 Mahendiran T, Fawaz S, Viscusi M. et al. Simplification of continuous intracoronary thermodilution. EuroIntervention 2024; 20 (19) e1217-e1226
- 27 Gallinoro E, Bertolone DT, Fernandez-Peregrina E. et al. Reproducibility of bolus versus continuous thermodilution for assessment of coronary microvascular function in patients with ANOCA. EuroIntervention 2023; 19 (02) e155-e166
- 28 Gallinoro E, Bertolone DT, Mizukami T. et al. Continuous vs bolus thermodilution to assess microvascular resistance reserve. JACC Cardiovasc Interv 2023; 16 (22) 2767-2777
- 29 Fawaz S, Marin F, Khan SA. et al. Comparison of bolus versus continuous thermodilution derived indices of microvascular dysfunction in revascularized coronary syndromes. Int J Cardiol Heart Vasc 2024; 51: 101374
- 30 Ong P, Athanasiadis A, Sechtem U. Intracoronary acetylcholine provocation testing for assessment of coronary vasomotor disorders. J Vis Exp 2016; 2016 (114) 54295
- 31 Suzuki S, Kaikita K, Yamamoto E, Jinnouchi H, Tsujita K. Role of acetylcholine spasm provocation test as a pathophysiological assessment in nonobstructive coronary artery disease. Cardiovasc Interv Ther 2021; 36 (01) 39-51
- 32 Seitz A, Feenstra R, Konst RE. et al. Acetylcholine rechallenge: a first step toward tailored treatment in patients with coronary artery spasm. JACC Cardiovasc Interv 2022; 15 (01) 65-75
- 33 Gurgoglione FL, Vignali L, Montone RA. et al. Coronary spasm testing with acetylcholine: a powerful tool for a personalized therapy of coronary vasomotor disorders. Life (Basel) 2024; 14 (03) 292
- 34 Sueda S, Sakaue T. A review of the role of tests of coronary reactivity in clinical practice. Eur Cardiol 2024; 19: e16
- 35 Lanza GA, Careri G, Crea F. Mechanisms of coronary artery spasm. Circulation 2011; 124 (16) 1774-1782
- 36 Miner SES, McCarthy MC, Ardern CI. et al. The relationships between acetylcholine-induced chest pain, objective measures of coronary vascular function and symptom status. Front Cardiovasc Med 2023; 10: 1217731
- 37 Ohba K, Sugiyama S, Sumida H. et al. Microvascular coronary artery spasm presents distinctive clinical features with endothelial dysfunction as nonobstructive coronary artery disease. J Am Heart Assoc 2012; 1 (05) e002485
- 38 McChord J, Gollwitzer R, Seitz A, Sechtem U, Bekeredjian R, Ong P. Coronary tortuosity in patients with acetylcholine-induced coronary microvascular spasm. Eur Heart J 2022; 43
- 39 Beltrame JF, Crea F, Kaski JC. et al; Coronary Vasomotion Disorders International Study Group (COVADIS). International standardization of diagnostic criteria for vasospastic angina. Eur Heart J 2017; 38 (33) 2565-2568
- 40 Bairey Merz CN, Pepine CJ, Walsh MN, Fleg JL. Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation 2017; 135 (11) 1075-1092
- 41 Del Buono MG, Montone RA, Camilli M. et al. Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: JACC state-of-the-art review. J Am Coll Cardiol 2021; 78 (13) 1352-1371
- 42 Gurgoglione FL, Benatti G, Denegri A. et al. Coronary microvascular dysfunction: insights on prognosis and future perspectives. Rev Cardiovasc Med 2025; 26 (01) 25757
- 43 Huang J, Steinberg R, Brown MJ, Rinfret S, Toleva O. Invasive evaluation for coronary vasospasm. US Cardiol 2023; 17: e07
- 44 Jansen TPJ, Konst RE, de Vos A. et al. Efficacy of diltiazem to improve coronary vasomotor dysfunction in ANOCA: the EDIT-CMD randomized clinical trial. JACC Cardiovasc Imaging 2022; 15 (08) 1473-1484
- 45 Fábián E, Varga A, Picano E, Vajo Z, Rónaszéki A, Csanády M. Effect of simvastatin on endothelial function in cardiac syndrome X patients. Am J Cardiol 2004; 94 (05) 652-655
- 46 Pauly DF, Johnson BD, Anderson RD. et al. In women with symptoms of cardiac ischemia, nonobstructive coronary arteries, and microvascular dysfunction, angiotensin-converting enzyme inhibition is associated with improved microvascular function: a double-blind randomized study from the National Heart, Lung and Blood Institute Women's Ischemia Syndrome Evaluation (WISE). Am Heart J 2011; 162 (04) 678-684
- 47 Smilowitz NR, Prasad M, Widmer RJ. et al; Microvascular Network (MVN). Comprehensive management of ANOCA, part 2-program development, treatment, and research initiatives: JACC state-of-the-art review. J Am Coll Cardiol 2023; 82 (12) 1264-1279
- 48 Foley MJ, Rajkumar CA, Ahmed-Jushuf F. et al. Coronary sinus reducer for the treatment of refractory angina (ORBITA-COSMIC): a randomised, placebo-controlled trial. Lancet 2024; 403 (10436): 1543-1553
- 49 COSIMA: Coronary Sinus Reducer for the Treatment of Refractory Microvascular Angina. ClinicalTrials.gov identifier NCT04606459. Johannes Gutenberg University; ongoing. Accessed June 10, 2025 at : https://clinicaltrials.gov/study/NCT04606459