Open Access
CC BY 4.0 · Sustainability & Circularity NOW 2025; 02: a26354606
DOI: 10.1055/a-2635-4606
Original Article

Unveiling the Role of the Microalga Nannochloropsis gaditana in the Biogenic Synthesis of Zinc Oxide

Susanna Tinello
1   Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, Italy
2   Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
,
Chiara Mazzariol
1   Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, Italy
,
Carlo Pilotto
1   Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, Italy
2   Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
,
Paolo Dolcet
1   Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, Italy
3   Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
,
Giorgio Perin
2   Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
,
Matteo Battistolli
2   Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
,
Federica Sandrelli
2   Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
,
Tomas Morosinotto
2   Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
,
1   Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, Italy
3   Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
› Author Affiliations

Supported by: Diamond Light Source SP30680
Funding Information This research was supported by the Diamond Light Source for beamtime (proposal SP30680).


Preview

Abstract

The increasing demand for environmentally friendly and sustainable approaches to materials synthesis calls, inter alia, for the development of biogenic methods to produce inorganic compounds by exploiting biological macromolecules and organisms. This study focuses on the optimization of a one-pot green synthesis of zinc oxide (ZnO) particles using microalgae extracts as a biogenic agent. Microalgae serve as an environmentally friendly platform for biotechnological applications due to their ability to promote the synthesis of valuable chemicals, thanks to their active components, such as enzymes. A systematic investigation of the experimental parameters revealed that both the reaction temperature and the concentration of microalgae extract significantly influenced the crystallite size of ZnO nanoparticles. In addition, the role of sodium hydroxide as a precipitating agent when used in combination with microalgae extract was addressed and compared with existing literature. The results indicate that microalgae extract can act as a scaffold to promote the controlled growth of ZnO particles. Antimicrobial tests also showed that ZnO particles synthesized with microalgae exhibited comparable antimicrobial activity with respect to ZnO produced by conventional methods. These results highlight the potential of microalgae as biogenic agents for the green synthesis of ZnO particles with tunable structural and antimicrobial properties.

Supplementary Material



Publication History

Received: 05 November 2024

Accepted after revision: 10 June 2025

Article published online:
04 July 2025

© 2025. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

Bibliographical Record
Susanna Tinello, Chiara Mazzariol, Carlo Pilotto, Paolo Dolcet, Giorgio Perin, Matteo Battistolli, Federica Sandrelli, Tomas Morosinotto, Silvia Gross. Unveiling the Role of the Microalga Nannochloropsis gaditana in the Biogenic Synthesis of Zinc Oxide. Sustainability & Circularity NOW 2025; 02: a26354606.
DOI: 10.1055/a-2635-4606
 
  • References

  • 1 Anastas PT, Warner JC. Green Chemistry: Theory and Practice. Oxford University Press; 1998
  • 2 Bretos I, Diodati S, Jiménez R. et al. Chem – Eur J 2020; 26 (42) 9157-9179
  • 3 Gross S. Unconventional Green Synthesis of Inorganic Nanomaterials; 2024
  • 4 Faramarzi MA, Sadighi A. Adv Colloid Interface Sci 2013; 189: 1-20
  • 5 Slocik JM, Knecht MR, Naik RR. Chapter 2: biogenic synthesis of inorganic materials. In Unconventional Green Synthesis of Inorganic Nanomaterials. Gross S. ed Inorganic Materials. Vol 14. 2024: 29-103
  • 6 Dahoumane SA, Mechouet M, Wijesekera K. et al. Green Chem 2017; 19 (3) 552-587
  • 7 Khanna P, Kaur A, Goyal D. J Microbiol Methods 2019; 163: 105656
  • 8 Shankar PD, Shobana S, Karuppusamy I. et al. Enzyme Microb Technol 2016; 95: 28-44
  • 9 Brayner R, Yéprémian C, Djediat C. et al. Langmuir 2009; 25 (17) 10062-10067
  • 10 Nagarajan S, Kuppusamy KA. J Nanobiotechnol 2013; 11 (39) 1
  • 11 Brayner R, Coradin T, Beaunier P. et al. Colloids Surf, B 2012; 93: 20-23
  • 12 Lefebvre DD, Kelly D, Budd K. Appl Environ Microbiol 2007; 73 (1) 243-249
  • 13 Scarano G, Morelli E. Plant Sci 2003; 165 (4) 803-810
  • 14 Rao MD, Pennathur G. Mater Res Bull 2017; 85: 64-73
  • 15 Marchegiani F, Cibej E, Vergni P, Tosi G, Fermani S, Falini G. J Cryst Growth 2009; 311 (17) 4219-4225
  • 16 Mata TM, Martins AA, Caetano NS. Renewable Sustainable Energy Rev 2010; 14 (1) 217-232
  • 17 Gabriella Pasqua GA, Forni C. Botanica Generale e diversità Vegetale. Piccin; 2015
  • 18 Mueller JG, C. E. C. Pritchard PH. Bioremediation: Principles and Applications. Cambridge University Press; 1996
  • 19 Ebadi M, Zolfaghari MR, Aghaei SS. et al. RSC Adv 2019; 9 (41) 23508-23525
  • 20 Bahnemann DW, Kormann C, Hoffmann MR. J Phys Chem 1987; 91 (14) 3789-3798
  • 21 Perin G, Bellan A, Bernardi A, Bezzo F, Morosinotto T. Physiol Plantarum 2019; 166 (1) 380-391
  • 22 Archibald JM, Keeling PJ. Trends Genet 2002; 18 (11) 577-584
  • 23 van Embden J, Gross S, Kittilstved KR, Della Gaspera E. Chem Rev 2022; 1
  • 24 U. S. FDA. 2024 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=182.8991 (accessed)
  • 25 Tayel AA, Sorour NM, El-Baz AF, El-Tras WF. Food Preserv 2017; 6: 487-526
  • 26 Sirelkhatim A, Mahmud S, Seeni A. et al. Nano-Micro Lett 2015; 7 (3) 219-242
  • 27 Pasquet J, Chevalier Y, Couval E. et al. Int J Pharm 2014; 460 1–2 92-100
  • 28 Moezzi A, Cortie M, McDonagh A. Dalton Trans 2011; 40 (18) 4871-4878
  • 29 Reichle RA, Mccurdy KG, Hepler LG. Can J Chem 1975; 53 (24) 3841-3845
  • 30 Charlot G. Qualitative Inorganic Analysis. John Wiley & Sons, Inc.; 1957
  • 31 Einstein A. Ann Phys 1905; 322 (8) 549-560
  • 32 Goux A, Pauporté T, Chivot J, Lincot D. Electrochim Acta 2005; 50 (11) 2239-2248
  • 33 Dolcet P, Latini F, Casarin M. et al. Eur J Inorg Chem 2013; 13: 2291-2300
  • 34 Izaki M, Khoo PL, Shinagawa T. J Electrochem Soc 2021; 168 (11) 1
  • 35 Molefe FV, Koao LF, Dejene BF, Swart HC. Opt Mater 2015; 46: 292-298
  • 36 Yan CL, Xue DF. J Phys Chem B 2006; 110 (23) 11076-11080
  • 37 Ahmed S, Annu Chaudhry SA, Ikram S. J Photochem Photobiol B 2017; 166: 272-284
  • 38 Selvarajan E, Mohanasrinivasan V. Mater Lett 2013; 112: 180-182
  • 39 Hamouda RA, Yousuf WE, Mohammed ABA, Mohammed RS, Darwish DB, Abdeen EE. Microb Pathog. 2020 147
  • 40 Rasool A, Kiran S, Gulzar T. et al. J Clean Prod 2023; 398: 1
  • 41 Abbas A, Ahmad T, Hussain S. et al. Int J Environ Sci Technol 2022; 19 (11) 11333-11346
  • 42 Rao MD, Gautam P. Environ Prog Sustainable Energy 2016; 35 (4) 1020-1026
  • 43 Tran GT, Nguyen NTH, Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. J Environ Chem Eng 2023; 11 (5) 1
  • 44 Siddique K, Shahid M, Shahzad T. et al. Environ Sci Pollut Res 2021; 28 (22) 28307-28318
  • 45 Scholz MJ, Weiss TL, Jinkerson RE. et al. Eukaryot Cell 2014; 13 (11) 1450-1464
  • 46 Niederberger M, Cölfen H. Phys Chem Chem Phys 2006; 8 (28) 3271-3287
  • 47 Helmut Cölfen MA. Mesocrystals and Nonclassical Crystallization. Wiley; 2008
  • 48 Hiemstra T, Mendez JC, Li JY. Environ Sci: Nano 2019; 6 (3) 820-833
  • 49 Petroutsos D, Amiar S, Abida H. et al. Prog Lipid Res 2014; 54: 68-85
  • 50 Zittelli GC, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR. J Biotechnol 1999; 70 1–3 299-312
  • 51 Rocha JMS, Garcia JEC, Henriques MHF. Biomol Eng 2003; 20 4–6 237-242
  • 52 Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Appl Phys Lett 2007; 90 (21) 1
  • 53 da Silva BL, Caetano BL, Chiari-Andréo BG, Pietro RCLR, Chiavacci LA. Colloids Surf, B 2019; 177: 440-447
  • 54 Lallo da Silva B, Abucafy MP, Berbel Manaia E. et al. Int J Nanomed 2019; 14: 9395-9410
  • 55 Padmavathy N, Vijayaraghavan R. Sci Technol Adv Mater 2008; 9 (3) 035004
  • 56 Langford JI, Wilson AJC. J Appl Crystallogr 1978; 11: 102-113
  • 57 Romoli O, Mukherjee S, Mohid SA. et al. ACS Infect Dis 2019; 5 (7) 1200-1213