Open Access
CC BY 4.0 · Sustainability & Circularity NOW 2025; 02: a26302599
DOI: 10.1055/a-2630-2599
Original Article

Methyl Blue Dye Adsorption Using Activated Eggshell: Kinetics, Isotherm, and Phytotoxicity Analysis

Autoren

  • Al Shariar Hasan

    1   Chemistry Discipline, Khulna University, Khulna, Bangladesh
  • Sagar Kumar Dutta

    1   Chemistry Discipline, Khulna University, Khulna, Bangladesh
  • Abul Bashar

    1   Chemistry Discipline, Khulna University, Khulna, Bangladesh
  • Palash Kumar Dhar

    1   Chemistry Discipline, Khulna University, Khulna, Bangladesh
  • Rezaul Haque

    1   Chemistry Discipline, Khulna University, Khulna, Bangladesh


Graphical Abstract

Abstract

Aesthetic and health concerns have been raised about removing color from wastewater. Industrial activity is a major source of water contamination. Dyes can be hazardous, carcinogenic, and mutagenic to wildlife, plants, and humans. Consequently, it is essential to process wastewater prior to its release into the environment. Fabrics, leather tanning, paper, plastics, and printing all employ synthetic dyes like methyl blue (MB). MB is one of the triphenylmethane acid dyes and anionic dyes. In this investigation, refuse eggshell powder was carbonized and subsequently activated with lemon juice extract as an activating agent. The activated carbon eggshell (ACE) that was prepared was subjected to Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and zero point charge (ZPC). The adsorption rate was significantly influenced by several parameters, including pH, adsorbent dosage, initial concentration, contact time, and temperature. Additionally, isotherm models (including Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D–R) isotherm models), kinetic models (including pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion, and liquid-film diffusion models), and phytotoxicity studies were investigated. The optimum adsorption was achieved at a pH of 2, adsorbent dosage of 1.0 g, contact time of 70 min, and initial (MB) dye concentration of 40 mg/L. The maximal (MB) dye removal efficiency was initiated at 98.94%. This adsorbent (ACE) is expected to be well received as a more cost-effective alternative to other adsorbents.



Publikationsverlauf

Eingereicht: 11. März 2025

Angenommen nach Revision: 06. Juni 2025

Artikel online veröffentlicht:
02. Juli 2025

© 2025. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

Bibliographical Record
Al Shariar Hasan, Sagar Kumar Dutta, Abul Bashar, Palash Kumar Dhar, Rezaul Haque. Methyl Blue Dye Adsorption Using Activated Eggshell: Kinetics, Isotherm, and Phytotoxicity Analysis. Sustainability & Circularity NOW 2025; 02: a26302599.
DOI: 10.1055/a-2630-2599
 
  • References

  • 1 Dawood S, Sen TK, Phan C. Water Air Soil Pollut 2014; 225 (01) 1
  • 2 Raina S, Roy A, Bharadvaja N. Environ Nanotechnol Monitor Manage 2020; 13: 1
  • 3 Dhar PK, Saha P, Hasan MK, Amin MK, Haque MR. Cleaner Eng Technol 2021; 3: 1
  • 4 Meenakumari M, Philip D. Spectrochim Acta, Part A 2015; 135: 632-638
  • 5 Doltade SB, Yadav YJ, Jadhav NL. South Afr J Chem Eng 2022; 40: 100-106
  • 6 Azam K, Raza R, Shezad N. et al. J Environ Chem Eng 2020; 8 (05) 1
  • 7 Rashid Al-Mamun M, Hossain KT, Mondal S, Afroza Khatun M, Shahinoor Islam M, Zaved Hossain Khan DM. South Afr J Chem Eng 2022; 40: 113-125
  • 8 Yagub MT, Sen TK, Afroze S, Ang HM. Adv Colloid Interface Sci 2014; 209: 172-184
  • 9 Ali NS, Jabbar NM, Alardhi SM, Majdi HS, Albayati TM. Heliyon 2022; 8 (08) 1
  • 10 Chowdhury MF, Khandaker S, Sarker F, Islam A, Rahman MT, Awual MR. J Mol Liq 2020; 318: 1
  • 11 Kubra KT, Salman MS, Znad H, Hasan MN. Efficient encapsulation of toxic dye from wastewater using biodegradable polymeric adsorbent. J Mol Liq 2021; 329: 115541
  • 12 Aragaw TA, Alene AN. Emerg Contam 2022; 8: 59-74
  • 13 Zen S, El Berrichi FZ. Desalin Water Treat 2016; 57 (13) 6024-6032
  • 14 Ravulapalli S, Ravindhranath K. Int J Environ Sci Technol 2019; 16 (12) 7837-7848
  • 15 Ledakowicz S, Pázdzior K. Molecules 2021; 26 (04) 1
  • 16 Al-Jaaf HJ, Ali NS, Alardhi SM, Albayati TM. Desalin Water Treat 2022; 245: 226-237
  • 17 Robinson T, Mcmullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. n.d.
  • 18 Yao Y, Xu F, Chen M, Xu Z, Zhu Z. Bioresour Technol 2010; 101 (09) 3040-3046
  • 19 Dutta SK, Amin MK, Ahmed J, Elias M, Mahiuddin M. South Afr J Chem Eng 2022; 40: 195-208
  • 20 Darweesh MA, Elgendy MY, Ayad MI, Ahmed AMM, Elsayed NMK, Hammad WA. South Afr J Chem Eng 2022; 40: 10-20
  • 21 Demirbas A. J Hazard Mater 2009; 167 (01) –03 1-9
  • 22 Brishti RS, Kundu R, Habib MA, Ara MH. Results Chem 2023; 5: 1
  • 23 Crini G. Bioresour Technol 2006; 97 (09) 1061-1085
  • 24 El-Nemr MA, Yılmaz M, Ragab S, Hassaan MA, El Nemr A. Sci Rep 2023; 13 (01) 1
  • 25 El-Nemr MA, Yilmaz M, Ragab S, Hassaan MA, Nemr AE. Sci Rep 2023; 13: 4268
  • 26 Annane K, Lemlikchi W, Tingry S. Biomass Convers Biorefin 2023; 13 (07) 6163-6174
  • 27 Ahmad A, Jini D, Aravind M. et al. Arab J Chem 2020; 13 (12) 8717-8722
  • 28 Borhade AV, Kale AS. Appl Water Sci 2017; 7 (08) 4255-4268
  • 29 Borhade AV, Tope DR, Uphade BK. E-J Chem n.d. 9: 1 http://www.ejchem.net
  • 30 Huang W, Pan S, Yu Q, Liu X, Liu Y, Liu R. J Inorg Organometall Polym Mater 2019; 29 (05) 1755-1766
  • 31 Liu R, Lv P, Fu H, Lu R, Wu X, Lu Y. J Nanosci Nanotechnol 2017; 17 (07) 4755-4762
  • 32 Zhang L, Zhang Y, Yang L, Jiang X, Yang Q. Desalin Water Treat 2015; 54 (08) 2259-2269
  • 33 Yang L, Zhang Y, Liu X. et al. Chem Eng J 2014; 246: 88-96
  • 34 Kasirajan R, Bekele A, Girma E. South Afr J Chem Eng 2022; 40: 209-229
  • 35 Torit J, Phihusut D. Environ Sci Pollut Res 2019; 26 (33) 34101-34109
  • 36 Gergely G, Wéber F, Lukács I. et al. Ceram Int 2010; 36 (02) 803-806
  • 37 Kundu R, Biswas C, Ahmed J, Naime J, Ara MH. J Chem Health Risks 2020; 10 (04) 243-252
  • 38 Borhade AV, Kale AS. Appl Water Sci 2017; 7 (08) 4255-4268
  • 39 Tsai WT, Yang JM, Lai CW, Cheng YH, Lin CC, Yeh CW. Bioresour Technol 2006; 97 (03) 488-493
  • 40 Ojha AK, Bulasara VK. Environ Prog Sustainable Energy 2015; 34 (02) 461-470
  • 41 Rohim R, Ahmad R, Ibrahim N, Hamidin N, Zulzikrami C, Abidin A. Adv Environ Biol 2014; 8 (22) 1 http://www.aensiweb.com/AEB/
  • 42 Mim J, Sultana MS, Dhar PK, Hasan MK, Dutta SK. RSC Adv 2024; 14 (35) 25409-25424
  • 43 Ahmad A, Jini D, Aravind M. et al. Arab J Chem 2020; 13 (12) 8717-8722
  • 44 Ali MH, Dutta SK, Sultana MS, Habib A, Dhar PK. Int J Biol Macromol 2024; 280: 1
  • 45 Mosabberul Haque M, Rahman A, Shafiul Islam Shahin M. et al. Results Chem 2024; 7: 1
  • 46 Chen S, Zhang J, Zhang C, Yue Q, Li Y, Li C. Desalination 2010; 252 (01) –03 149-156
  • 47 Uddin MT, Rahman MA, Rukanuzzaman M, Islam MA. Appl Water Sci 2017; 7 (06) 2831-2842
  • 48 Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS. J Colloid Interface Sci 2005; 288 (02) 371-376
  • 49 Isaac CPJ, Sivakumar A. Desalin Water Treat 2013; 51 (40) –42 7700-7709
  • 50 Ma Q, Shen F, Lu X, Bao W, Ma H. Desalin Water Treat 2013; 51 (19) –21 3700-3709
  • 51 Benjelloun M, Miyah Y, Akdemir Evrendilek G, Zerrouq F, Lairini S. Arab J Chem 2021; 14 (04) 1
  • 52 Habiba U, Siddique TA, Li Lee JJ, Joo TC, Ang BC, Afifi AM. Carbohydr Polym 2018; 191: 79-85
  • 53 Ghaedi M, Biyareh MN, Kokhdan SN. et al. Mater Sci Eng C 2012; 32 (04) 725-734
  • 54 Yu F, Wu Y, Ma J, Zhang C. J Environ Sci 2013; 25 (01) 195-203
  • 55 Onyango MS, Kojima Y, Aoyi O, Bernardo EC, Matsuda H. J Colloid Interface Sci 2004; 279 (02) 341-350
  • 56 Yu F, Wu Y, Ma J, Zhang C. J Environ Sci 2013; 25 (01) 195-203
  • 57 Salleh MAM, Mahmoud DK, Karim WAWA, Idris A. Desalination 2011; 280 (01) –03 1-13
  • 58 Dada AO. IOSR J Appl Chem 2012; 3 (01) 38-45
  • 59 Salam MA, El-Shishtawy RM, Obaid AY. J Ind Eng Chem 2014; 20 (05) 3559-3567
  • 60 Akansha K, Chakraborty D, Sachan SG. Biocatal Agric Biotechnol 2019; 18: 1
  • 61 Berradi M, Hsissou R, Khudhair M. et al. Heliyon 2019; 5 (11) 1
  • 62 Rahman M, Rayhan M, Chowdhury M, Mohiuddin K, Chowdhury M. Fundam Appl Agric 2018; 4 (01) 480
  • 63 Rajan MR. J Pollut Effects Control 2015; 3 (02) 1
  • 64 Rana S, Kumar K. Int J BioSci Technol 2017; 10 (08) 1 https://www.researchgate.net/publication/331318861
  • 65 Tripathi S, Singh K, Singh A, Mishra A, Chandra R. Int J Environ Sci Technol 2022; 19 (03) 2025-2038
  • 66 Cifci Deniz Izlen, Meric Sureyya. Advances in Environmental Research 5 (01) Technopress Mar 2016; 37-50
  • 67 Cifci Deniz Izlen, Nesli Aydın. International Journal of Environmental Analytical Chemistry 104 (19) 2024; 7441-7456
  • 68 Saber-Samandari Samaneh. et al. Journal of environmental management 2014; 146: 481-490