RSS-Feed abonnieren
DOI: 10.1055/a-2625-9116
Nicht invasives Monitoring der Ovarfunktion bei Alpakas und Lamas
Untersuchungen zur Eignung der Sexualsteroid-Messung in der Milch und der VaginalzytologieNon-invasive monitoring of ovarian function in llamas and alpacasEvaluation of the suitability of sex steroid measurement in milk and vaginal cytology
Zusammenfassung
Gegenstand und Ziel
Die Festlegung eines geeigneten Deckzeitzeitpunkts ist bei Neuweltkamelen (NWK) schwierig, da empfängnisbereite Stuten keine Brunstsymptome oder Verhaltensänderungen zeigen. Daher wurde die Anwendbarkeit der Messung von Sexualsteroiden in der Milch und der Vaginalzytologie als nicht invasive Methode zur Erfassung der Ovaraktivität untersucht.
Material und Methoden
Die Probenentnahmen erfolgten von insgesamt 10 Alpakas (A) und 9 Lamas (L) über einen Zeitraum von 4 Wochen nach der Geburt. Die Konzentrationen von Progesteron (P4), Estradiol-17β (E2) und Gesamtöstrogenen (GOE) in Blut und Milch wurden mittels Radioimmunoassays nach Probenextraktion gemessen. Die Anfertigung und Auswertung der Vaginalabstriche erfolgten nach dem beim Hund routinemäßig angewandten Verfahren.
Ergebnisse
Bei A und L waren die Östrogenkonzentrationen in der Milch im Vergleich zum Blut signifikant niedriger (E2 im Blut: A: 11,1±2,9 pg/ml, L: 14,6±5,0 pg/ml; E2 in der Milch: A: 6,2±3,1 pg/ml, L: 7,9±5,8 pg/ml; GOE im Blut: A: 120,2±26,9 pg/ml, L: 143,7±45 pg/ml; GOE in der Milch: A: 57,1±16,1, L: 75,9±34,6 pg/ml), während die Unterschiede zwischen den beiden Spezies nicht signifikant waren. Die Korrelationen zwischen den Steroidkonzentrationen in Blut und Milch waren bei L, nicht jedoch bei A, statistisch signifikant. Während sich bezüglich Korrelationen zwischen Östrogenkonzentrationen und vaginalzytologischen Parametern bei L mehrere statistische Signifikanzen mit p-Werten teilweise <0,01 ergaben, war bei A nur GOE im Blut negativ mit dem Anteil der Basal-/Parabasalzellen korreliert.
Schlussfolgerungen und klinische Relevanz
Die P4-Messung in der Milch erlaubt bei NWK mit großer Zuverlässigkeit die Erfassung von Lutealphasen. Trotz statistischer Signifikanz waren auch bei L die Korrelationen zwischen den Östrogenkonzentrationen in Blut und Milch zu schwach, um auf der Basis von Östrogenkonzentrationen in der Milch auf der Ebene des Einzeltieres die Blutkonzentrationen mit akzeptabler Genauigkeit abzuschätzen. Die Vaginalzytologie könnte bei L grundsätzlich zur Erkennung der Reifephase von Follikelwellen geeignet sein. Vor einer routinemäßigen Anwendung müssten jedoch Verbesserungen der Methodik und eine weitergehende Validierung vorgenommen werden.
Abstract
Objective and Aim
In South American Camelids (SAC), determining a suitable time point for mating poses challenges as females ready for conception do not show estrus signs or behavioral changes. Therefore, the applicability of measuring sex steroids in milk and vaginal cytology as non-invasive methods for monitoring ovarian activity was investigated.
Material and Methods
Samples were collected from a total of 10 alpacas (A) and 9 llamas (L) over a period of 4 weeks following parturition. The concentrations of progesterone (P4), estradiol-17β (E2) and total estrogens (GOE) in blood and milk were measured using radioimmunoassays after sample extraction. Vaginal swabs were prepared and evaluated according to the procedure routinely used in dogs.
Results
In A and L, the estrogen concentrations in milk were significantly lower than those in blood (E2 in blood: A: 11.1±2.9 pg/ml, L: 14.6±5.0 pg/ml; E2 in milk: A: 6.2±3.1 pg/ml, L: 7.9±5.8 pg/ml; GOE in blood: A: 120. 2±26.9 pg/ml, L: 143.7±45 pg/ml; GOE in milk: A: 57.1±16.1, L: 75.9±34.6 pg/ml), while the differences between the two species were not significant. The correlations between steroid concentrations in blood and milk were statistically significant in L, but not in A. While in L, correlations between estrogen concentrations and vaginal cytological parameters showed several statistical significances with p-values partly <0.01, in A only GOE in the blood was negatively correlated with the proportion of basal-/parabasal cells.
Conclusions and Clinical Relevance
P4 measurement in milk allows the detection of luteal phases in SAC with high reliability. Despite statistical significance, the correlations between estrogen concentrations in blood and milk were also too weak in L to estimate blood concentrations with acceptable accuracy based on estrogen concentrations in milk at the level of the individual animal. Vaginal cytology could in principle be suitable for the identification of the maturation phase of follicular waves in L. However, improvements of the methodology and further validation are warranted before its routine use.
Publikationsverlauf
Eingereicht: 25. November 2024
Angenommen: 13. Mai 2025
Artikel online veröffentlicht:
02. September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Wolfthaler J, Franz S, Dadak A. et al. Umfrage unter Neuweltkameliden-Züchtern zum Zucht- und Fortpflanzungsmanagement. Tierärztl Prax Ausg G Grosstiere Nutztiere 2020; 48: 386-397
- 2 Neubert S, von Altrock A, Wendt M. et al. Llama and alpaca management in Germany – results of an online survey among owners on farm structure, health problems and self-reflection. Animals (Basel) 2021; 11: 102
- 3 Wagner H, Ulrich L, Leisen A. et al. Populationsstruktur und Haltungsweisen von Neuweltkameliden in Deutschland sowie Fachkunde der Tierhalter. Tierärztl Prax Ausg G Grosstiere Nutztiere 2022; 50: 237-249
- 4 Sumar JB. Reproduction in llamas and alpacas. Anim Reprod Sci 1996; 42: 405-415
- 5 Brown BW. A review on reproduction in South American camelids. Anim Reprod Sci 2000; 58: 169-195
- 6 Vaughan J. Ovarian function in South American camelids (alpacas, llamas, vicunas, guanacos). Anim Reprod Sci 2011; 124: 237-243
- 7 Kershaw-Young CM, Druart X, Vaughan J. et al. β-Nerve growth factor is a major component of alpaca seminal plasma and induces ovulation in female alpacas. Reprod Fertil Dev 2012; 24: 1093-1097
- 8 Ratto MH, Leduc YA, Valderrama XP. et al. The nerve of ovulation-inducing factor in semen. Proc Natl Acad Sci U S A 2012; 109: 15042-150427
- 9 Silva M, Paiva L, Ratto MH. Ovulation mechanism in South American Camelids: The active role of β-NGF as the chemical signal eliciting ovulation in llamas and alpacas. Theriogenology 2020; 150: 280-287
- 10 Adams GP, Sumar J, Ginther OJ. Effects of lactational and reproductive status on ovarian follicular waves in llamas (Lama glama. J Reprod Fertil 1990; 90: 535-445
- 11 Bravo PW, Fowler ME, Stabenfeldt GH. et al. Ovarian follicular dynamics in the llama. Biol Reprod 1990; 43: 579-585
- 12 Chaves MG, Aba M, Agüero A. et al. Ovarian follicular wave pattern and the effect of exogenous progesterone on follicular activity in non-mated llamas. Anim Reprod Sci 2002; 69: 37-46
- 13 Cavilla MV, Bianchi CP, Maistruarena C. et al. Ultrasonographic and endocrine characterization of follicular waves in llamas with a special reference to the overlapping phenomenon during successive waves. Reprod Domest Anim 2013; 48: 923-930
- 14 Gallelli MF, Bianchi C, Zampini E. et al Plasma IGF1 and 17β-estradiol concentrations during the follicular wave in llamas. Front Vet Sci 2020; Oct 30 7: 555261
- 15 Bravo PW, Sumar J. Laparoscopic examination of the ovarian activity in alpacas. Anim Reprod Sci 1989; 21: 271-281
- 16 Vaughan JL, Macmillan KL, D'Occhio MJ. Ovarian follicular wave characteristics in alpacas. Anim Reprod Sci 2004; 80: 353-561
- 17 Fernandez-Baca S, Hansel W, Saatman R. et al. Differential luteolytic effects of right and left uterine horns in the alpaca. Biol Reprod 1979; 20: 586-595
- 18 Sumar J, Fredriksson G, Alarcón V. et al. Levels of 15-keto-13,14-dihydro-PFG2 alpha, progesterone and oestradiol-17β after induced ovulations in llamas and alpacas. Acta Vet Scand 1988; 29: 339-346
- 19 Aba MA, Forsberg M, Kindahl H. et al. Endocrine changes after mating in pregnant and non-pregnant llamas and alpacas. Acta Vet Scand 1995; 36: 489-498
- 20 England BG, Foote WC, Cardozo AG. et al. Oestrous and mating behaviour in the llama (Llama glama). Anim Behav 1971; 722-726
- 21 Sumar J, Bravo PW, Foote WC. Sexual receptivity and time of ovulation in alpacas. Small Rumin Res 1993; 11: 143-150
- 22 Bravo PW, Fowler ME, Lasley BL. The postpartum llama: fertility after parturition. Biol Reprod 1994; 51: 1084-1087
- 23 Vaughan JL, Macmillan KL, Anderson GA. et al. Effects of mating behaviour and the ovarian follicular state of female alpacas on conception. Aust Vet J 2003; 81: 86-90
- 24 Hoops M, Kauffold J. Physiologie und Pathologie der Fortpflanzung bei weiblichen, domestizierten Neuweltkameliden. Übersicht mit besonderer Berücksichtigung der ultrasonographischen Diagnostik. Tierärztl Prax Ausg G Grosstiere Nutztiere 2013; 41: 166-175
- 25 Riveros JL, Schuler G, Bonacic C. et al. Ovarian follicular dynamics and hormonal secretory profiles in guanacos (Lama guanicoe. Anim Reprod Sci 2010; 119: 63-67
- 26 Hoffmann B, Günzler O, Hamburger R. et al. Milk progesterone as a parameter for fertility control in cattle; methodological approaches and present status of application in Germany. Br Vet J 1976; 132: 469-476
- 27 Volkery J, Gottschalk J, Sobiraj A. et al. Progesterone, pregnanediol-3-glucuronide, relaxin and oestrone sulphate concentrations in saliva, milk and urine of female alpacas (Vicugna pacos) and their application in pregnancy diagnosis. Vet Rec 2012; 171: 195
- 28 Bruinjé TC, Colazo MG, Ribeiro ES. et al. Using in-line milk progesterone data to characterize parameters of luteal activity and their association with fertility in Holstein cows. J Dairy Sci 2019; 102: 780-798
- 29 Klein R, Schams D, Failing K. et al. Investigations on the re-establishment of the positive feedback of oestradiol during anoestrus in the bitch. Reprod Domest Anim 2003; 38: 13-20
- 30 Hoffmann B, Gentz F, Failing K. Investigations into the course of progesterone-, oestrogen- and eCG-concentrations during normal and impaired pregnancy in the mare. Reprod Domest Anim 1996; 32: 717-723
- 31 Hoffmann B, Kyrein HJ, Ender ML. An efficient procedure for the determination of progesterone by radioimmunoassay applied to bovine peripheral plasma. Horm Res 1973; 4: 302-310
- 32 Hoffmann B, Höveler R, Hasan SH. et al. Ovarian and pituitary function in dogs after hysterectomy. J Reprod Fertil 1992; 96: 837-845
- 33 Wehrend A. Leitsymptome Gynäkologie und Geburtshilfe beim Hund: diagnostischer Leitfaden und Therapie. Stuttgart: Enke Verlag; 2010
- 34 Ellenberger C, Wilsher S, Allen WR. et al. Immunolocalisation of the uterine secretory proteins uterocalin, uteroferrin and uteroglobin in the mare's uterus and placenta throughout pregnancy. Theriogenology 2008; 70: 746-757
- 35 Morin DE, Rowan LL, Hurley WL. et al. Composition of milk from llamas in the United States. J Dairy Sci 1995; 78: 1713-1720
- 36 Riek A, Gerken M. Changes in llama (Lama glama) milk composition during lactation. J Dairy Sci 2006; 89: 3484-3493
- 37 Chad EK, DePeters EJ, Puschner B. et al. Preliminary investigation of the composition of alpaca (Vicugna pacos) milk in California. Small Rumin Res 2014; 117: 165-168
- 38 Mößler M, Aichner J, Müller A. et al. Concentrations of fat, protein, lactose, macro and trace minerals in alpaca colostrum and milk at different lactation stages. Animals (Basel) 2021; 11: 1955
- 39 Bravo PW, Lasley BL, Fowler ME. Resumption of ovarian follicular activity and uterine involution in the postpartum llama. Theriogenology 1995; 44: 783-791
- 40 Bravo PW, Fowler ME, Stabenfeldt GH. et al. Endocrine responses in the llama to copulation. Theriogenology 1990; 33: 891-899
- 41 Bravo PW, Stabenfeldt GH, Lasley BL. et al. The effect of ovarian follicle size on pituitary and ovarian responses to copulation in domesticated South American camelids. Biol Reprod 1991; 45: 553-559
- 42 Bravo PW, Stabenfeldt GH, Fowler ME. et al. Urinary steroids in the periparturient and postpartum periods through early pregnancy in llamas. Theriogenology 1991; 36: 267-278
- 43 Schuler G. Steroid sulfates in domestic mammals and laboratory rodents. Domest Anim Endocrinol 2021; 76: 106622
- 44 Kustritz MVR. Vaginal cytology in the bitch and queen. In: Sharkey LC, Radin MJ, Seelig D, eds. Veterinary Cytology, First Edition. Wiley Online Library, John Wiley & Sons, Inc.; 2021: 552-558 Im Internet: Stand: 07.05.2024
- 45 Reckers F, Klopfleisch R, Belik V. et al. Canine vaginal cytology: A revised definition of exfoliated vaginal cells. Front Vet Sci 2022; 9: 834031
- 46 Leon JB. Reproductive endocrinology and vaginal cytology of the female llama (Lama glama). PhD thesis, Oregon State University. 1989 Im Internet: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/bg257j185 Stand: 07.05.2024
- 47 Perez-Guerra UH, Quispe YM, Gonzáles HI. et al. Ovarian follicular dynamics and its functional significance in relation with follicle deviation, vaginal cytology, and hormone profiles in llamas (Lama glama. Animals (Basel) 2022; 12: 3299
- 48 Pacheco CJ. Caracterización de la citología exfoliativa vaginal en alpacas (Vicugna pacos). Rev Investig Vet Perú [Internet] 2017; 28: 886-893 Im Internet: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1609-91172017000400013&lng=es Stand: 07.05.2024
- 49 Shille VM, Lundström KE, Stabenfeldt GH. Follicular function in the domestic cat as determined by estradiol-17 beta concentrations in plasma: relation to estrous behavior and cornification of exfoliated vaginal epithelium. Biol Reprod 1979; 21: 953-963
- 50 Mills JN, Valli VE, Lumsden JH. Cyclical changes of vaginal cytology in the cat. Can Vet J 1979; 20: 95-101
- 51 Johnson AK. Normal feline reproduction: The queen. J Feline Med Surg 2022; 24: 204-211
- 52 Wudy SA, Schuler G, Sánchez-Guijo A. et al. The art of measuring steroids: Principles and practice of current hormonal steroid analysis. J Steroid Biochem Mol Biol 2018; 179: 88-103