Subscribe to RSS

DOI: 10.1055/a-2625-5344
Supporting Safe-by-Design of Multicomponent Nanomaterials by Linking Functionality-Related Properties with Potential Safety Issues
Supported by: EU H2020 SUNSHINE 952924
Funding Information This work is part of the SUNSHINE project and has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement 952924.

Abstract
Advanced materials, including multicomponent nanomaterials (MCNMs), are rationally designed to show specific new or enhanced functionalities. They are considered key in solving current societal challenges, such as the energy transition, yet they represent a challenge themselves to safe innovation and risk assessment. One challenge is the lack of available toxicological information at early innovation stages. Instead, information on functionality and related material properties is generally available at these early innovation stages, but such information is typically not used in safety assessments. Safe-by-Design (SbD) aims to improve the safety of materials and products by integrating safety considerations with functionality as early as possible in the innovation process. To exploit the information on functionality for SbD purposes, a conceptual approach is presented that uses functionality-related material properties to flag potential impacts on risks and guide SbD. This approach relies on insights into relations between material properties and their potential impact on release, fate/toxicokinetics, and toxicity. These relations have been illustrated for 21 new or enhanced material properties that are incorporated in the design of MCNMs. For example, a set of “mechanical properties” was identified as likely to have an impact on release and fate/toxicokinetics of MCNMs, while “reactive properties” were expected to be able to affect their toxicity. The applicability of this approach was briefly explored through several case studies. The presented approach is designed to “flag” potential aspects of risk that require further consideration. These identified aspects can then support the application of SbD for MCNMs, including grouping of similar MCNMs to enable sharing of safety information. The approach is relevant at early stages in the innovation process, where toxicological information is still mostly absent.
Keywords
Material properties - Safe-and-sustainable-by-design - Safe innovation - Risk - Physicochemical properties - Advanced materialsPublication History
Received: 20 January 2025
Accepted after revision: 31 March 2025
Accepted Manuscript online:
02 June 2025
Article published online:
30 June 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
Elmer Swart, Jan-Harm Westerdiep, Elena Badetti, Andrea Brunelli, Virginia Cazzagon, Teresa Fernandes, Anniek M. C Gielen, Danail Hristozov, Petra C. E. van Kesteren, Nynke A. Krans, Samia Ouhajji, Willie J. G. M. Peijnenburg, Hubert Rauscher, Lya G. Soeteman-Hernández, Vicki Stone, Georgia Tsiliki, Agnes G. Oomen. Supporting Safe-by-Design of Multicomponent Nanomaterials by Linking Functionality-Related Properties with Potential Safety Issues. Sustainability & Circularity NOW 2025; 02: a26255344.
DOI: 10.1055/a-2625-5344
-
References
- 1
Tavernaro I,
Dekkers S,
Soeteman-Hernández LG,
Herbeck-Engel P,
Noorlander C,
Kraegeloh A.
NanoImpact 2021; 24: 100354
MissingFormLabel
- 2
D'mello SR,
Cruz CN,
Chen M,
Kapoor M,
Lee S,
Tyner KM.
Na Nanotechnol 2017; 12: 523-529
MissingFormLabel
- 3
Peters RJB,
Bouwmeester H,
Gottardo S.
et al.
Trends Food Sci Technol 2016; 54: 155-164
MissingFormLabel
- 4
Piccinno F,
Gottschalk F,
Seeger S,
Nowack B.
J Nanopart Res 2012; 14: 1109
MissingFormLabel
- 5
Dang Y,
Zhang Y,
Fan L,
Chen H,
Roco MC.
Trends in worldwide nanotechnology patent applications: 1991 to 2008. J Nanopart Res
2010; 12: 687-706
MissingFormLabel
- 6
Banin U,
Ben-Shahar Y,
Vinokurov K.
Chem Mater 2013; 26: 97-110
MissingFormLabel
- 7
Giese B,
Drapalik M,
Zajicek L,
Jepsen D,
Reihlen A,
Zimmermann T.
Advanced Materials: Overview of the Field and Screening Criteria for Relevance Assessment.
Dessau-Roßlau, Germany: German Environment Agency (UBA); 2020
MissingFormLabel
- 8 eNanoMapper, http://enanomapper.net/ 2022
MissingFormLabel
- 9
Saleh NB,
Aich N,
Plazas-Tuttle J,
Lead JR,
Lowry GV.
Research strategy to determine when novel nanohybrids pose unique environmental risks.
Environ Sci: Nano 2015; 2: 11-18
MissingFormLabel
- 10
Ahrens B,
Berkner S,
Blum C.
et al.
Advanced Materials. Cornerstones for a Safe and Sustainable Life Cycle. Dessau-Roßlau,
Germany: German Environment Agency (UBA); 2023
MissingFormLabel
- 11
Gressler S,
Hipfinger C,
Pavlicek A.
et al.
Nanocarrier – Part I: Overview and Categorization of Nanocarriers. Dessau-Roßlau,
Germany: German Environment Agency (UBA); 2024
MissingFormLabel
- 12
Zhang F,
Wang Z,
Peijnenburg WJGM,
Vijver MG.
Environ Sci Technol 2022; 56: 15238-15250
MissingFormLabel
- 13
Zeng H,
Sun S.
Adv Funct Mater 2008; 18: 391-400
MissingFormLabel
- 14
Heunisch E,
Cassee F,
Bleeker E,
Kuhlbusch T,
Gonzales M.
Development or revisions of OECD test guideline (TG) and guidance documents (GD) applicable
for nanomaterials, Nanoharmony, Nanomet, A status report. July 2022
MissingFormLabel
- 15
Bleeker EAJ,
Swart E,
Braakhuis H.
et al.
Regul Toxicol Pharmacol 2023; 139: 105360
MissingFormLabel
- 16
Soeteman-Hernandez LG,
Apostolova MD,
Bekker C.
et al.
Mater Today Commun 2019; 20: 100548
MissingFormLabel
- 17
Martínez-Azúa BC,
Sama-Berrocal C.
J Open Innov: Technol, Market, Complex 2022; 8: 134
MissingFormLabel
- 18
European Commission.
Chemicals strategy. The EU’s chemicals strategy for sustainability towards a toxic-free
environment, https://environment.ec.europa.eu/strategy/chemicals-strategy_en 2020
MissingFormLabel
- 19
Abbate E,
Garmendia Aguirre I,
Bracalente G.
et al.
Safe and Sustainable by Design Chemicals and Materials – Methodological Guidance.
Luxembourg: Publications Office of the European Union; 2024. https://publications.jrc.ec.europa.eu/repository/handle/JRC138035
MissingFormLabel
- 20
Caldeira C,
Farcal R,
Garmendia Aguirre I.
et al.
Safe and sustainable by design chemicals and materials. Framework for the definition
of criteria and evaluation procedure for chemicals and materials, JRC Technical Report,
JRC128591. Luxembourg: Publications Office of the European Union; 2022
MissingFormLabel
- 21 NanoReg2. https://www.rivm.nl/en/international-projects/nanoregii (accessed 16/07/2024)
MissingFormLabel
- 22 SUNSHINE. https://www.h2020sunshine.eu/ (accessed 16/07/2024).
MissingFormLabel
- 23
OECD.
Sustainability and safe and sustainable by design: working descriptions for the safer
innovation approach, Series on the Safety of Manufactured Nanomaterials No. 105, ENV/CBC/MONO(2022)30;
2022
MissingFormLabel
- 24
EEA.
Designing safe and sustainable products requires a new approach for chemicals; 2021
https://www.eea.europa.eu/publications/designing-safe-and-sustainable-products-1/delivering-products-that-are-safe
MissingFormLabel
- 25
Cefic.
Safe and Sustainable-by-Design: Boosting innovation and growth within the European
chemical industry; 2021 https://cefic.org/app/uploads/2021/09/Safe-and-Sustainable-by-Design-Report-Boosting-innovation-and-growth-within-the-European-chemical-industry.pdf
MissingFormLabel
- 26
Cefic.
Safe and Sustainable-by-Design: a transformative power; 2022 https://cefic.org/app/uploads/2022/04/Safe-and-Sustainable-by-Design-Guidance-A-transformative-power.pdf
MissingFormLabel
- 27
Cefic.
Safe and Sustainableby-Design: A guidance to unleash the transformative power of innovation;
2024 https://cefic.org/app/uploads/2024/03/Safe-and-Sustainable-by-Design-a-guidance-to-unleash-the-transformative-power-of-innovation.pdf
MissingFormLabel
- 28
ChemSec.
Our view on Safe and Sustainable by Design criteria; 2021 https://chemsec.org/reports/our-view-on-safe-and-sustainable-by-design-criteria/
MissingFormLabel
- 29
Morose G.
J Clean Prod 2010; 18: 285-289
MissingFormLabel
- 30
Soeteman-Hernández LG,
Blanco CF,
Koese M,
Sips AJAM,
Noorlander CW,
Peijnenburg WJGM.
iScience 2023; 26: 106060
MissingFormLabel
- 31
Pizzol L,
Livieri A,
Salieri B.
et al.
Clean Environ Syst 2023; 10: 100132
MissingFormLabel
- 32
Caldeira C,
Farcal R,
Moretti C.
et al.
Safe and sustainable by design chemicals and materials. Review of safety and sustainability
dimensions, aspects, methods, indicators, and tools, JRC Technical Report. Luxembourg:
Publications Office of the European Union; 2022
MissingFormLabel
- 33
Jacobs JF,
van de Poel IR,
Osseweijer P.
Fiedeler U,
Coenen C,
Davies SR.
Ferrari.
eds Towards Safety and Sustainability by Design Nano-Sized TiO2 in Sunscreens, in Understanding Nanotechnology: Philosophy, Policy and Publics. Heidelberg,
Germany: Akademische Verlagsgesellschaft AKA; 2010: 187-198
MissingFormLabel
- 34
Nath D,
Banerjee P.
Environ Toxicol Pharmacol 2013; 36: 997-1014
MissingFormLabel
- 35
Hristozov D,
Zabeo A,
Soeteman-Hernández LG,
Pizzol L,
Stoycheva S.
RSC Sustainability 2023; 1: 838-846
MissingFormLabel
- 36
European Commission.
Commission Recommendation of 8.12.2022 establishing a European assessment framework
for ‘safe and sustainable by design’ chemicals and materials; 2022
MissingFormLabel
- 37
OECD.
Moving towards a Safe(r) Innovation Approach (SIA) for more sustainable nanomaterials
and nano-enabled products, Series on the Safety of Manufactured Nanomaterials No.
96, ENV/JM/MONO/(2020)36/REV1; 2020
MissingFormLabel
- 38
Wohlleben W,
Persson M,
Suarez-Merino B.
et al.
Environ Sci: Nano 2024; 11: 2948-2967
MissingFormLabel
- 39
Basei G,
Hristozov D,
Lamon L.
et al.
NanoImpact 2019; 13: 76-99
MissingFormLabel
- 40
Balraadjsing S,
Peijnenburg WJGM,
Vijver MG.
Chemosphere 2022; 307: 135930
MissingFormLabel
- 41
Zhou Y,
Wang Y,
Peijnenburg W,
Vijver MG,
Balraadjsing S,
Fan W.
Environ Sci Technol 2023; 57: 17786-17795
MissingFormLabel
- 42
Li L,
Luo Y,
Li R.
et al.
Effective uptake of submicrometre plastics by crop plants via a crack-entry mode.
Nat Sustainability 2020; 3: 929-937
MissingFormLabel
- 43
Braakhuis HM,
Murphy F,
Ma-Hock L.
et al.
Appl In Vitro Toxicol 2021; 7: 112-128
MissingFormLabel
- 44
Di Cristo L,
Janer G,
Dekkers S.
et al.
Nanotoxicology 2022; 16: 310-332
MissingFormLabel
- 45
Di Cristo L,
Oomen AG,
Dekkers S.
et al.
Nanomaterials 2021; 11: 2623
MissingFormLabel
- 46
Murphy FA,
Johnston HJ,
Dekkers S.
et al.
ALTEX 2023; 40: 125-140
MissingFormLabel
- 47
European Commission.
Commission Regulation (EU) 2018/1881 of 3 December 2018 amending Regulation (EC) No
1907/2006 of the European Parliament and of the Council on the Registration, Evaluation,
Authorisation and Restriction of Chemicals (REACH) as regards Annexes I, III, VI,
VII, VIII, IX, X, XI, and XII to address nanoforms of substances; 2018
MissingFormLabel
- 48
Stone V,
Gottardo S,
Bleeker EAJ.
et al.
Nano Today 2020; 35: 100941
MissingFormLabel
- 49
Stoliński F,
Rybińska-Fryca A,
Gromelski M,
Mikolajczyk A,
Puzyn T.
Nanotoxicology 2022; 16: 276-289
MissingFormLabel
- 50
Banerjee A,
Kar S,
Pore S,
Roy K.
Nanotoxicology 2023; 17: 78-93
MissingFormLabel
- 51 European Commission – About technology readiness levels. https://euraxess.ec.europa.eu/career-development/researchers/manual-scientific-entrepreneurship/major-steps/trl (accessed 16/07/2024)
MissingFormLabel
- 52
Goff JM,
Sinnott SB,
Dabo I.
J Chem Phys 2020; 152: 064102
MissingFormLabel
- 53
Sukhanova A,
Bozrova S,
Sokolov P,
Berestovoy M,
Karaulov A,
Nabiev I.
Nanoscale Res Lett 2018; 13: 44
MissingFormLabel
- 54
Burello E,
Worth AP.
Nanotoxicology 2011; 5: 228-235
MissingFormLabel
- 55
Yin S,
Liu J,
Kang Y,
Lin Y,
Li D,
Shao L.
Br J Pharmacol 2019; 176: 3754-3774
MissingFormLabel
- 56
Zhang H,
Ji Z,
Xia T.
et al.
ACS Nano 2012; 6: 4349-4368
MissingFormLabel
- 57
Gutiérrez L,
de la Cueva L,
Moros M.
et al.
Nanotechnology 2019; 30: 112001
MissingFormLabel
- 58
Lim EWC,
Feng R.
J Chem Phys 2012; 136: 124109
MissingFormLabel
- 59
Huss A,
Spoerri A,
Egger M,
Kromhout H,
Vermeulen R,
Cohort SN.
Amyotroph Lateral Scler Frontotemp Degener 2015; 16: 80-85
MissingFormLabel
- 60
Koeman T,
Slottje P,
Schouten LJ.
et al.
Occup Environ Med 2017; 74: 578-585
MissingFormLabel
- 61
Jose J,
Kumar R,
Harilal S.
et al.
Environ Sci Pollut Res Int 2020; 27: 19214-19225
MissingFormLabel
- 62
Mohapatra J,
Xing M,
Liu JP.
Materials 2019; 12: 3208
MissingFormLabel
- 63
Nobrega G,
de Souza RR,
Gonçalves IM,
Moita AS,
Ribeiro JE,
Lima RA.
Appl Sci 2022; 12: 1115
MissingFormLabel
- 64
Bischof JC,
Diller KR.
Ann Rev Biomed Eng 2018; 20: 301-327
MissingFormLabel
- 65
Hartmann NIB,
Skjolding LM,
Hansen SF,
Baun A,
Kjølholt J,
Gottschalk F.
Environmental Fate and Behaviour of Nanomaterials. New Knowledge on Important Transfomation
Processes. Copenhagen, Denmark: Danish Environmental Protection Agency; 2014
MissingFormLabel
- 66
Yu H,
Peng Y,
Yang Y,
Li Z-Y.
npj Comput Mater 2019; 5: 45
MissingFormLabel
- 67
Ramírez-García G,
Martínez-Alfaro M,
d'Orlyé F.
et al.
Int J Pharm 2017; 532: 696-703
MissingFormLabel
- 68
Ferreira-Gonçalves T,
Constantin C,
Neagu M,
Pinto Reis C,
Sabri F,
Simón-Vázquez R.
Biomed Pharm 2021; 144: 112356
MissingFormLabel
- 69
Kumeria T,
McInnes SJP,
Maher S,
Santos A.
Expert Opin Drug Delivery 2017; 14: 1407-1422
MissingFormLabel
- 70
Singh N,
Son S,
An J.
et al.
Chem Soc Rev 2021; 50: 12883-12896
MissingFormLabel
- 71
Liu Y,
Zhu S,
Gu Z,
Chen C,
Zhao Y.
Particuology 2022; 69: 31-48
MissingFormLabel
- 72
Yagublu V,
Karimova A,
Hajibabazadeh J.
et al.
J Funct Biomater 2022; 13: 196
MissingFormLabel
- 73
Krans NA,
van der Feltz EC,
Xie J,
Dugulan IA,
Zečević J,
de Jong KP.
Chem Cat Chem 2018; 10: 3388-3391
MissingFormLabel
- 74
Kobos L,
Shannahan J.
Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12: 1608
MissingFormLabel
- 75
EFSA Scientific Committee.
More S,
Bampidis V,
Benford D.
et al.
EFSA J 2021; 19: 6768
MissingFormLabel
- 76
Misra SK,
Dybowska A,
Berhanu D,
Luoma SN,
Valsami-Jones E.
Sci Total Environ 2012; 438: 225-232
MissingFormLabel
- 77
Peijnenburg WJGM,
Ruggiero E,
Boyles M.
et al.
Materials 2020; 13: 2235
MissingFormLabel
- 78
Bhakta HC,
Lin JM,
Grover WH.
Sci Rep 2020; 10: 19734
MissingFormLabel
- 79
Amorim MJB,
Lin S,
Schlich K.
et al.
Environ Sci Technol 2018; 52: 1514-1524
MissingFormLabel
- 80
Kennedy AJ,
Coleman JG,
Diamond SA.
et al.
Nanotoxicology 2017; 11: 546-557
MissingFormLabel
- 81
Halamoda-Kenzaoui B,
Ceridono M,
Urbán P.
et al.
J Nanobiotechnol 2017; 15: 48
MissingFormLabel
- 82
Wick P,
Manser P,
Limbach LK.
et al.
Toxicol Lett 2007; 168: 121-131
MissingFormLabel
- 83
Li X,
Wang B,
Zhou S.
et al.
J Nanbiotechnol 2020; 18: 45
MissingFormLabel
- 84
Yuan X,
Zhang X,
Sun L,
Wei Y,
Wei X.
Part Fibre Toxicol 2019; 16: 18
MissingFormLabel
- 85
Murugadoss S,
Brassinne F,
Sebaihi N.
et al.
Part Fibre Toxicol 2020; 17: 10
MissingFormLabel
- 86
Murugadoss S,
Mülhopt S,
Diabaté S.
et al.
Nanomaterials 2021; 11: 3226
MissingFormLabel
- 87
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS).
scientific opinion on the use of high viscosity white mineral oils as a food additive.
EFSA J 2009; 7: 1387
MissingFormLabel
- 88
Murphy F,
Dekkers S,
Braakhuis H.
et al.
NanoImpact 2021; 22: 100314
MissingFormLabel
- 89
Abaricia JO,
Farzad N,
Heath TJ,
Simmons J,
Morandini L,
Olivares-Navarrete R.
Acta Biomater 2021; 133: 58-73
MissingFormLabel
- 90
Anselmo AC,
Zhang M,
Kumar S.
et al.
ACS Nano 2015; 9: 3169-3177
MissingFormLabel
- 91
Cifuentes-Rius A,
Boase NRB,
Font I.
et al.
ACS Appl Mater Interfaces 2017; 9: 11461-11471
MissingFormLabel
- 92
Boostani H,
Modirrousta S.
Procedia Eng 2016; 145: 1541-1548
MissingFormLabel
- 93
Feng G,
Hu M,
Wu B.
et al.
Nanomaterials 2022; 12: 742
MissingFormLabel
- 94
Nundy S,
Ghosh A,
Tahir A,
Mallick TK.
ACS Appl Mater Interfaces 2021; 13: 25540-25552
MissingFormLabel
- 95
Pastrana HF,
Cartagena-Rivera AX,
Raman A,
Ávila A.
J Nanobiotechnol 2019; 17: 32
MissingFormLabel
- 96
Pešić M,
Podolski-Renić A,
Stojković S.
et al.
Chem-Biol Interact 2015; 232: 85-93
MissingFormLabel
- 97
Bahl A,
Hellack B,
Wiemann M.
et al.
NanoImpact 2020; 19: 100234
MissingFormLabel
- 98
Warheit DB,
Reed KL,
Sayes CM.
Inhalation Toxicol 2009; 21: 61-67
MissingFormLabel
- 99
Sims CM,
Hanna SK,
Heller DA.
et al.
Nanoscale 2017; 9: 15226-15251
MissingFormLabel
- 100
Pavan C,
Delle Piane M,
Gullo M.
et al.
Part Fibre Toxicol 2019; 16: 32
MissingFormLabel
- 101
Kaymaz SV,
Nobar HM,
Sarıgül H,
Soylukan C,
Akyüz L,
Yüce M.
Adv Colloid Interface Sci 2023; 322: 103035
MissingFormLabel
- 102
Vasconcellos JS,
Bomfim Fraga YS,
da Silva Rêgo JH,
Confessori Sartoratto PP,
Rojas MF.
Dev Built Environ 2023; 14: 100157
MissingFormLabel
- 103
Svendsen C,
Walker LA,
Matzke M.
et al.
Nat Nanotechnol 2020; 15: 731-742
MissingFormLabel