Open Access
CC BY 4.0 · Sustainability & Circularity NOW 2025; 02: a26255344
DOI: 10.1055/a-2625-5344
Safe and Sustainable by Design
Original Article

Supporting Safe-by-Design of Multicomponent Nanomaterials by Linking Functionality-Related Properties with Potential Safety Issues

1   National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
,
Jan-Harm Westerdiep
1   National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
,
Elena Badetti
2   Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
,
Andrea Brunelli
2   Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
,
Virginia Cazzagon
2   Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
3   LEITAT Technological Center, Barcelona, Spain
,
Teresa Fernandes
4   Heriot-Watt University, Edinburgh, The UK
,
Anniek M. C Gielen
1   National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
,
Danail Hristozov
5   EMERGE Ltd., Sofia, Bulgaria
,
Petra C. E. van Kesteren
1   National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
,
Nynke A. Krans
1   National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
,
Samia Ouhajji
1   National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
,
Willie J. G. M. Peijnenburg
1   National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
6   Center for Environmental Sciences, Leiden University, Leiden, The Netherlands
,
7   European Commission, Joint Research Centre (JRC), Ispra, Italy
,
1   National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
,
Vicki Stone
4   Heriot-Watt University, Edinburgh, The UK
,
Georgia Tsiliki
8   Athena Research Center, Marousi, Greece
9   Purposeful IKE, Athens, Greece
,
1   National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
10   Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
› Author Affiliations

Supported by: EU H2020 SUNSHINE 952924
Funding Information This work is part of the SUNSHINE project and has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement 952924.


Preview

Abstract

Advanced materials, including multicomponent nanomaterials (MCNMs), are rationally designed to show specific new or enhanced functionalities. They are considered key in solving current societal challenges, such as the energy transition, yet they represent a challenge themselves to safe innovation and risk assessment. One challenge is the lack of available toxicological information at early innovation stages. Instead, information on functionality and related material properties is generally available at these early innovation stages, but such information is typically not used in safety assessments. Safe-by-Design (SbD) aims to improve the safety of materials and products by integrating safety considerations with functionality as early as possible in the innovation process. To exploit the information on functionality for SbD purposes, a conceptual approach is presented that uses functionality-related material properties to flag potential impacts on risks and guide SbD. This approach relies on insights into relations between material properties and their potential impact on release, fate/toxicokinetics, and toxicity. These relations have been illustrated for 21 new or enhanced material properties that are incorporated in the design of MCNMs. For example, a set of “mechanical properties” was identified as likely to have an impact on release and fate/toxicokinetics of MCNMs, while “reactive properties” were expected to be able to affect their toxicity. The applicability of this approach was briefly explored through several case studies. The presented approach is designed to “flag” potential aspects of risk that require further consideration. These identified aspects can then support the application of SbD for MCNMs, including grouping of similar MCNMs to enable sharing of safety information. The approach is relevant at early stages in the innovation process, where toxicological information is still mostly absent.

Supplementary Material



Publication History

Received: 20 January 2025

Accepted after revision: 31 March 2025

Accepted Manuscript online:
02 June 2025

Article published online:
30 June 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

Bibliographical Record
Elmer Swart, Jan-Harm Westerdiep, Elena Badetti, Andrea Brunelli, Virginia Cazzagon, Teresa Fernandes, Anniek M. C Gielen, Danail Hristozov, Petra C. E. van Kesteren, Nynke A. Krans, Samia Ouhajji, Willie J. G. M. Peijnenburg, Hubert Rauscher, Lya G. Soeteman-Hernández, Vicki Stone, Georgia Tsiliki, Agnes G. Oomen. Supporting Safe-by-Design of Multicomponent Nanomaterials by Linking Functionality-Related Properties with Potential Safety Issues. Sustainability & Circularity NOW 2025; 02: a26255344.
DOI: 10.1055/a-2625-5344
 
  • References

  • 1 Tavernaro I, Dekkers S, Soeteman-Hernández LG, Herbeck-Engel P, Noorlander C, Kraegeloh A. NanoImpact 2021; 24: 100354
  • 2 D'mello SR, Cruz CN, Chen M, Kapoor M, Lee S, Tyner KM. Na Nanotechnol 2017; 12: 523-529
  • 3 Peters RJB, Bouwmeester H, Gottardo S. et al. Trends Food Sci Technol 2016; 54: 155-164
  • 4 Piccinno F, Gottschalk F, Seeger S, Nowack B. J Nanopart Res 2012; 14: 1109
  • 5 Dang Y, Zhang Y, Fan L, Chen H, Roco MC. Trends in worldwide nanotechnology patent applications: 1991 to 2008. J Nanopart Res 2010; 12: 687-706
  • 6 Banin U, Ben-Shahar Y, Vinokurov K. Chem Mater 2013; 26: 97-110
  • 7 Giese B, Drapalik M, Zajicek L, Jepsen D, Reihlen A, Zimmermann T. Advanced Materials: Overview of the Field and Screening Criteria for Relevance Assessment. Dessau-Roßlau, Germany: German Environment Agency (UBA); 2020
  • 8 eNanoMapper, http://enanomapper.net/ 2022
  • 9 Saleh NB, Aich N, Plazas-Tuttle J, Lead JR, Lowry GV. Research strategy to determine when novel nanohybrids pose unique environmental risks. Environ Sci: Nano 2015; 2: 11-18
  • 10 Ahrens B, Berkner S, Blum C. et al. Advanced Materials. Cornerstones for a Safe and Sustainable Life Cycle. Dessau-Roßlau, Germany: German Environment Agency (UBA); 2023
  • 11 Gressler S, Hipfinger C, Pavlicek A. et al. Nanocarrier – Part I: Overview and Categorization of Nanocarriers. Dessau-Roßlau, Germany: German Environment Agency (UBA); 2024
  • 12 Zhang F, Wang Z, Peijnenburg WJGM, Vijver MG. Environ Sci Technol 2022; 56: 15238-15250
  • 13 Zeng H, Sun S. Adv Funct Mater 2008; 18: 391-400
  • 14 Heunisch E, Cassee F, Bleeker E, Kuhlbusch T, Gonzales M. Development or revisions of OECD test guideline (TG) and guidance documents (GD) applicable for nanomaterials, Nanoharmony, Nanomet, A status report. July 2022
  • 15 Bleeker EAJ, Swart E, Braakhuis H. et al. Regul Toxicol Pharmacol 2023; 139: 105360
  • 16 Soeteman-Hernandez LG, Apostolova MD, Bekker C. et al. Mater Today Commun 2019; 20: 100548
  • 17 Martínez-Azúa BC, Sama-Berrocal C. J Open Innov: Technol, Market, Complex 2022; 8: 134
  • 18 European Commission. Chemicals strategy. The EU’s chemicals strategy for sustainability towards a toxic-free environment, https://environment.ec.europa.eu/strategy/chemicals-strategy_en 2020
  • 19 Abbate E, Garmendia Aguirre I, Bracalente G. et al. Safe and Sustainable by Design Chemicals and Materials – Methodological Guidance. Luxembourg: Publications Office of the European Union; 2024. https://publications.jrc.ec.europa.eu/repository/handle/JRC138035
  • 20 Caldeira C, Farcal R, Garmendia Aguirre I. et al. Safe and sustainable by design chemicals and materials. Framework for the definition of criteria and evaluation procedure for chemicals and materials, JRC Technical Report, JRC128591. Luxembourg: Publications Office of the European Union; 2022
  • 21 NanoReg2. https://www.rivm.nl/en/international-projects/nanoregii (accessed 16/07/2024)
  • 22 SUNSHINE. https://www.h2020sunshine.eu/ (accessed 16/07/2024).
  • 23 OECD. Sustainability and safe and sustainable by design: working descriptions for the safer innovation approach, Series on the Safety of Manufactured Nanomaterials No. 105, ENV/CBC/MONO(2022)30; 2022
  • 24 EEA. Designing safe and sustainable products requires a new approach for chemicals; 2021 https://www.eea.europa.eu/publications/designing-safe-and-sustainable-products-1/delivering-products-that-are-safe
  • 25 Cefic. Safe and Sustainable-by-Design: Boosting innovation and growth within the European chemical industry; 2021 https://cefic.org/app/uploads/2021/09/Safe-and-Sustainable-by-Design-Report-Boosting-innovation-and-growth-within-the-European-chemical-industry.pdf
  • 26 Cefic. Safe and Sustainable-by-Design: a transformative power; 2022 https://cefic.org/app/uploads/2022/04/Safe-and-Sustainable-by-Design-Guidance-A-transformative-power.pdf
  • 27 Cefic. Safe and Sustainableby-Design: A guidance to unleash the transformative power of innovation; 2024 https://cefic.org/app/uploads/2024/03/Safe-and-Sustainable-by-Design-a-guidance-to-unleash-the-transformative-power-of-innovation.pdf
  • 28 ChemSec. Our view on Safe and Sustainable by Design criteria; 2021 https://chemsec.org/reports/our-view-on-safe-and-sustainable-by-design-criteria/
  • 29 Morose G. J Clean Prod 2010; 18: 285-289
  • 30 Soeteman-Hernández LG, Blanco CF, Koese M, Sips AJAM, Noorlander CW, Peijnenburg WJGM. iScience 2023; 26: 106060
  • 31 Pizzol L, Livieri A, Salieri B. et al. Clean Environ Syst 2023; 10: 100132
  • 32 Caldeira C, Farcal R, Moretti C. et al. Safe and sustainable by design chemicals and materials. Review of safety and sustainability dimensions, aspects, methods, indicators, and tools, JRC Technical Report. Luxembourg: Publications Office of the European Union; 2022
  • 33 Jacobs JF, van de Poel IR, Osseweijer P. Fiedeler U, Coenen C, Davies SR. Ferrari. eds Towards Safety and Sustainability by Design Nano-Sized TiO2 in Sunscreens, in Understanding Nanotechnology: Philosophy, Policy and Publics. Heidelberg, Germany: Akademische Verlagsgesellschaft AKA; 2010: 187-198
  • 34 Nath D, Banerjee P. Environ Toxicol Pharmacol 2013; 36: 997-1014
  • 35 Hristozov D, Zabeo A, Soeteman-Hernández LG, Pizzol L, Stoycheva S. RSC Sustainability 2023; 1: 838-846
  • 36 European Commission. Commission Recommendation of 8.12.2022 establishing a European assessment framework for ‘safe and sustainable by design’ chemicals and materials; 2022
  • 37 OECD. Moving towards a Safe(r) Innovation Approach (SIA) for more sustainable nanomaterials and nano-enabled products, Series on the Safety of Manufactured Nanomaterials No. 96, ENV/JM/MONO/(2020)36/REV1; 2020
  • 38 Wohlleben W, Persson M, Suarez-Merino B. et al. Environ Sci: Nano 2024; 11: 2948-2967
  • 39 Basei G, Hristozov D, Lamon L. et al. NanoImpact 2019; 13: 76-99
  • 40 Balraadjsing S, Peijnenburg WJGM, Vijver MG. Chemosphere 2022; 307: 135930
  • 41 Zhou Y, Wang Y, Peijnenburg W, Vijver MG, Balraadjsing S, Fan W. Environ Sci Technol 2023; 57: 17786-17795
  • 42 Li L, Luo Y, Li R. et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat Sustainability 2020; 3: 929-937
  • 43 Braakhuis HM, Murphy F, Ma-Hock L. et al. Appl In Vitro Toxicol 2021; 7: 112-128
  • 44 Di Cristo L, Janer G, Dekkers S. et al. Nanotoxicology 2022; 16: 310-332
  • 45 Di Cristo L, Oomen AG, Dekkers S. et al. Nanomaterials 2021; 11: 2623
  • 46 Murphy FA, Johnston HJ, Dekkers S. et al. ALTEX 2023; 40: 125-140
  • 47 European Commission. Commission Regulation (EU) 2018/1881 of 3 December 2018 amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards Annexes I, III, VI, VII, VIII, IX, X, XI, and XII to address nanoforms of substances; 2018
  • 48 Stone V, Gottardo S, Bleeker EAJ. et al. Nano Today 2020; 35: 100941
  • 49 Stoliński F, Rybińska-Fryca A, Gromelski M, Mikolajczyk A, Puzyn T. Nanotoxicology 2022; 16: 276-289
  • 50 Banerjee A, Kar S, Pore S, Roy K. Nanotoxicology 2023; 17: 78-93
  • 51 European Commission – About technology readiness levels. https://euraxess.ec.europa.eu/career-development/researchers/manual-scientific-entrepreneurship/major-steps/trl (accessed 16/07/2024)
  • 52 Goff JM, Sinnott SB, Dabo I. J Chem Phys 2020; 152: 064102
  • 53 Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Nanoscale Res Lett 2018; 13: 44
  • 54 Burello E, Worth AP. Nanotoxicology 2011; 5: 228-235
  • 55 Yin S, Liu J, Kang Y, Lin Y, Li D, Shao L. Br J Pharmacol 2019; 176: 3754-3774
  • 56 Zhang H, Ji Z, Xia T. et al. ACS Nano 2012; 6: 4349-4368
  • 57 Gutiérrez L, de la Cueva L, Moros M. et al. Nanotechnology 2019; 30: 112001
  • 58 Lim EWC, Feng R. J Chem Phys 2012; 136: 124109
  • 59 Huss A, Spoerri A, Egger M, Kromhout H, Vermeulen R, Cohort SN. Amyotroph Lateral Scler Frontotemp Degener 2015; 16: 80-85
  • 60 Koeman T, Slottje P, Schouten LJ. et al. Occup Environ Med 2017; 74: 578-585
  • 61 Jose J, Kumar R, Harilal S. et al. Environ Sci Pollut Res Int 2020; 27: 19214-19225
  • 62 Mohapatra J, Xing M, Liu JP. Materials 2019; 12: 3208
  • 63 Nobrega G, de Souza RR, Gonçalves IM, Moita AS, Ribeiro JE, Lima RA. Appl Sci 2022; 12: 1115
  • 64 Bischof JC, Diller KR. Ann Rev Biomed Eng 2018; 20: 301-327
  • 65 Hartmann NIB, Skjolding LM, Hansen SF, Baun A, Kjølholt J, Gottschalk F. Environmental Fate and Behaviour of Nanomaterials. New Knowledge on Important Transfomation Processes. Copenhagen, Denmark: Danish Environmental Protection Agency; 2014
  • 66 Yu H, Peng Y, Yang Y, Li Z-Y. npj Comput Mater 2019; 5: 45
  • 67 Ramírez-García G, Martínez-Alfaro M, d'Orlyé F. et al. Int J Pharm 2017; 532: 696-703
  • 68 Ferreira-Gonçalves T, Constantin C, Neagu M, Pinto Reis C, Sabri F, Simón-Vázquez R. Biomed Pharm 2021; 144: 112356
  • 69 Kumeria T, McInnes SJP, Maher S, Santos A. Expert Opin Drug Delivery 2017; 14: 1407-1422
  • 70 Singh N, Son S, An J. et al. Chem Soc Rev 2021; 50: 12883-12896
  • 71 Liu Y, Zhu S, Gu Z, Chen C, Zhao Y. Particuology 2022; 69: 31-48
  • 72 Yagublu V, Karimova A, Hajibabazadeh J. et al. J Funct Biomater 2022; 13: 196
  • 73 Krans NA, van der Feltz EC, Xie J, Dugulan IA, Zečević J, de Jong KP. Chem Cat Chem 2018; 10: 3388-3391
  • 74 Kobos L, Shannahan J. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12: 1608
  • 75 EFSA Scientific Committee. More S, Bampidis V, Benford D. et al. EFSA J 2021; 19: 6768
  • 76 Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami-Jones E. Sci Total Environ 2012; 438: 225-232
  • 77 Peijnenburg WJGM, Ruggiero E, Boyles M. et al. Materials 2020; 13: 2235
  • 78 Bhakta HC, Lin JM, Grover WH. Sci Rep 2020; 10: 19734
  • 79 Amorim MJB, Lin S, Schlich K. et al. Environ Sci Technol 2018; 52: 1514-1524
  • 80 Kennedy AJ, Coleman JG, Diamond SA. et al. Nanotoxicology 2017; 11: 546-557
  • 81 Halamoda-Kenzaoui B, Ceridono M, Urbán P. et al. J Nanobiotechnol 2017; 15: 48
  • 82 Wick P, Manser P, Limbach LK. et al. Toxicol Lett 2007; 168: 121-131
  • 83 Li X, Wang B, Zhou S. et al. J Nanbiotechnol 2020; 18: 45
  • 84 Yuan X, Zhang X, Sun L, Wei Y, Wei X. Part Fibre Toxicol 2019; 16: 18
  • 85 Murugadoss S, Brassinne F, Sebaihi N. et al. Part Fibre Toxicol 2020; 17: 10
  • 86 Murugadoss S, Mülhopt S, Diabaté S. et al. Nanomaterials 2021; 11: 3226
  • 87 EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). scientific opinion on the use of high viscosity white mineral oils as a food additive. EFSA J 2009; 7: 1387
  • 88 Murphy F, Dekkers S, Braakhuis H. et al. NanoImpact 2021; 22: 100314
  • 89 Abaricia JO, Farzad N, Heath TJ, Simmons J, Morandini L, Olivares-Navarrete R. Acta Biomater 2021; 133: 58-73
  • 90 Anselmo AC, Zhang M, Kumar S. et al. ACS Nano 2015; 9: 3169-3177
  • 91 Cifuentes-Rius A, Boase NRB, Font I. et al. ACS Appl Mater Interfaces 2017; 9: 11461-11471
  • 92 Boostani H, Modirrousta S. Procedia Eng 2016; 145: 1541-1548
  • 93 Feng G, Hu M, Wu B. et al. Nanomaterials 2022; 12: 742
  • 94 Nundy S, Ghosh A, Tahir A, Mallick TK. ACS Appl Mater Interfaces 2021; 13: 25540-25552
  • 95 Pastrana HF, Cartagena-Rivera AX, Raman A, Ávila A. J Nanobiotechnol 2019; 17: 32
  • 96 Pešić M, Podolski-Renić A, Stojković S. et al. Chem-Biol Interact 2015; 232: 85-93
  • 97 Bahl A, Hellack B, Wiemann M. et al. NanoImpact 2020; 19: 100234
  • 98 Warheit DB, Reed KL, Sayes CM. Inhalation Toxicol 2009; 21: 61-67
  • 99 Sims CM, Hanna SK, Heller DA. et al. Nanoscale 2017; 9: 15226-15251
  • 100 Pavan C, Delle Piane M, Gullo M. et al. Part Fibre Toxicol 2019; 16: 32
  • 101 Kaymaz SV, Nobar HM, Sarıgül H, Soylukan C, Akyüz L, Yüce M. Adv Colloid Interface Sci 2023; 322: 103035
  • 102 Vasconcellos JS, Bomfim Fraga YS, da Silva Rêgo JH, Confessori Sartoratto PP, Rojas MF. Dev Built Environ 2023; 14: 100157
  • 103 Svendsen C, Walker LA, Matzke M. et al. Nat Nanotechnol 2020; 15: 731-742