Subscribe to RSS
DOI: 10.1055/a-2625-4920
Pulmonale Hypertonie bei Linksherzerkrankungen
Pulmonary Hypertension Associated with Left Heart DiseaseAuthors

Zusammenfassung
Linksherzerkrankungen (LHD) sind die häufigste Ursache einer pulmonalen Hypertonie (PH), die weiter in isolierte postkapilläre PH (IpcPH) und kombinierte prä- und postkapilläre PH (CpcPH) unterteilt wird.
Mit dem Ziel Behandlungsansätzen näherzukommen, setzte die PH-LHD-Arbeitsgruppe des 7. Welt-Symposiums zur pulmonalen Hypertonie einen stärkeren Fokus auf die Phänotypisierung, Subtypisierung und die ausdifferenziertere Betrachtungsweise des breiten Spektrums der PH-LHD. Mit dieser Intention wurde ein 4-stufiges PH-LHD-System erarbeitet, in dem jede Stufe (A = Risiko, B = strukturelle Herzerkrankung, C = symptomatische Herzerkrankung, D = fortgeschritten) durch spezifische pathophysiologische, hämodynamische, klinische und letztendlich auch therapeutische Strategien gekennzeichnet ist. In diesem Kontext wird zudem auf zur PH-LHD führende kardiologische Krankheitsbilder mit spezifischen Therapieansätzen, wie die Mitral- und Aortenklappenstenose sowie ausgewählte Kardiomyopathien, ein Augenmerk gerichtet. Ebenso wird die Überschneidung mit anderen PH-Gruppen wie der CTEPH und der PH bei Lungenerkrankungen betont und konkretisiert. Der therapeutische Einsatz von PAH-Medikamenten, die einen pulmonalvaskulären Ansatz haben, kann anhand von Ergebnissen randomisierter klinischer Studien weiterhin außerhalb klinischer Studien nicht empfohlen werden.
Abstract
Left heart disease (LHD) is the most common cause of pulmonary hypertension (PH), which is further categorised into isolated post-capillary PH (IpcPH) and combined pre- and post-capillary PH (CpcPH).
With the aim of developing treatment strategies, the PH-LHD working group of the 7th World Symposium on Pulmonary Hypertension placed a stronger focus on phenotyping, subtyping and a more differentiated approach to the broad spectrum of PH-LHD. With this intention, a four-stage PH-LHD system was developed in which each stage (A = risk, B = structural heart disease, C = symptomatic heart disease, D = advanced) is characterised by specific pathophysiological, haemodynamic, clinical and ultimately therapeutic strategies. In this context, attention is also paid to cardiac diseases leading to PH-LHD with specific therapeutic approaches, such as mitral and aortic valve stenosis and selected cardiomyopathies. The overlap with other PH groups such as CTEPH and PH in lung diseases is also emphasised and specified. The therapeutic use of PAH drugs that have a pulmonary vascular approach can still not be recommended outside of clinical trials.
Schlüsselwörter
Linksherzerkrankung - Stenose - Ejektionsfraktion - postkapilläre pulmonale Hypertonie* geteilte Letztautorenschaft
Publication History
Article published online:
06 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Rosenkranz S, Gibbs JSR, Wachter R. et al. Left ventricular heart failure and pulmonary hypertension. Eur Heart J 2016; 37: 942-954
- 2 Brittain EL, Thenappan T, Huston JH. et al. Elucidating the clinical implications and pathophysiology of pulmonary hypertension in heart failure with preserved ejection fraction: a call to action: A science advisory from the American Heart Association. Circulation 2022; 146: e73-e88
- 3 Maron BA, Kovacs G, Vaidya A. et al. Cardiopulmonary hemodynamics in pulmonary hypertension and heart failure: JACC review topic of the week. J Am Coll Cardiol 2020; 76: 2671-2681
- 4 Usman MS, Van Spall HGC, Greene SJ. et al. The need for increased pragmatism in cardiovascular clinical trials. Nat Rev Cardiol 2022; 19: 737-750
- 5 Humbert M, Kovacs G, Hoeper M. et al. 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2022; 43: 3618-3731
- 6 Rayner SG, Tedford RJ, Leary PJ. et al. “This patient needs a doctor – not a guideline!” The zone of uncertainty in pulmonary artery wedge pressure measurement. Am J Respir Crit Care Med 2024; 210: 712-714
- 7 Tampakakis E, Shah SJ, Borlaug BA. et al. Pulmonary effective arterial elastance as a measure of right ventricular afterload and its prognostic value in pulmonary hypertension due to left heart disease. Circ Heart Fail 2018; 11: e004436
- 8 Ilonze OJ, Ebong IA, Guglin M. et al. Considerations in the Diagnosis and Management of Pulmonary Hypertension Associated With Left Heart Disease. JACC Heart failure 2024; 12: 1328-1342
- 9 Wattanachayakul P, Kittipibul V, Salah HM. et al. Invasive haemodynamic assessment in heart failure with preserved ejection fraction. ESC Heart Fail 2025; 12: 1558-1570
- 10 Al-Naamani N, Thenappan T. Left Heart Disease Phenotype in Pulmonary Arterial Hypertension: Considerations for Therapy. Chest 2024; 165: 766-768
- 11 Watkins DA, Johnson CO, Colquhoun SM. et al. Global, regional, and national burden of rheumatic heart disease, 1990–2015. N Engl J Med 2017; 377: 713-722
- 12 Bigna JJ, Noubiap JJ, Nansseu JR. et al. Prevalence and etiologies of pulmonary hypertension in Africa: a systematic review and meta-analysis. BMC Pulm Med 2017; 17: 183
- 13 Nair KK, Pillai HS, Titus T. et al. Persistent pulmonary artery hypertension in patients undergoing balloon mitral valvotomy. Pulm Circ 2013; 3: 426-431
- 14 Collins N, Sugito S, Davies A. et al. Prevalence and survival associated with pulmonary hypertension after mitral valve replacement: national echocardiography database of Australia study. Pulm Circ 2022; 12: e12140
- 15 Otto CM, Nishimura RA, Bonow RO. et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. J Am Coll Cardiol 2021; 77: e25-e197
- 16 Ratwate S, Stewart S, Strange G. et al. Prevalence of pulmonary hypertension in aortic stenosis and its influence on outcomes. Heart 2023; 109: 1319-1326
- 17 Zlotnick DM, Ouellette ML, Malenka DJ. et al. Effect of preoperative pulmonary hypertension on outcomes in patients with severe aortic stenosis following surgical aortic valve replacement. Am J Cardiol 2013; 112: 1635-1640
- 18 Miyamoto J, Ohno Y, Kamioka N. et al. on behalf of the OCEAN-TAVI Investigator Impact of Periprocedural Pulmonary Hypertension on Outcomes After Transcatheter Aortic Valve Replacement. JACC 2022; 80: 1601-1613
- 19 Kjaergaard J, Akkan D, Karmark Iversen K. et al. Prognostic importance of pulmonary hypertension in patients with heart failure. Am J Cardiol 2007; 99: 1146-1150
- 20 Adir Y, Guazzi M, Offer A. et al. Pulmonary hemodynamics in heart failure patients with reduced or preserved ejection fraction and pulmonary hypertension: similarities and disparities. Am Heart J 2017; 192: 120-127
- 21 Tigges E, Blankenberg S, von Bardeleben RS. et al. Implication of pulmonary hypertension in patients undergoing MitralClip therapy: results from the German transcatheter mitral valve interventions (TRAMI) registry. Eur J Heart Fail 2018; 20: 585-594
- 22 Ryan JJ, Maron BA. Vericiguat in heart failure with reduced ejection fraction. N Engl J Med 2020; 383: 1497
- 23 Nassif ME, Qintar M, Windsor SL. et al. Empagliflozin effects on pulmonary artery pressure in patients with heart failure: results from the EMBRACE-HF trial. Circulation 2021; 143: 1673-1686
- 24 Kirschbaum K, Vasa-Nicotera M, Zeiher AM. et al. SGLT2 inhibitor therapy and pulmonary artery pressure in patients with chronic heart failure-further evidence for improved hemodynamics by continuous pressure monitoring. Clin Res Cardiol 2022; 111: 469-472
- 25 Solomon SD, McMurray JJV, Vaduganathan M. et al. Finerenone in Heart Failure with mildly reduced or preserved ejection fraction. N Engl J Med 2024; 391: 1475-1485
- 26 Covella M, Rowin EJ, Hill NS. et al. Mechanism of Progressive Heart Failure and Significance of Pulmonary Hypertension in Obstructive Hypertrophic Cardiomyopathy. Circ Heart Fail 2017; 10: e003689
- 27 Longinow J, Buggey J, Jacob M. et al. Significance of Pulmonary Hypertension in Cardiac Amyloidosis. Am J Cardiol 2023; 192: 147-154
- 28 Izumida T, Imamura T, Tanaka S. et al. Therapeutic Strategy for Patients with Concomitant Pulmonary Artery Hypertension and Hypertrophic Obstructive Cardiomyopathy: A Rare Case Report. Medicina (Kaunas) 2023; 59: 401
- 29 Gao M, Zhang WH, Zhang ZG. et al. Cardiac amyloidosis presenting as pulmonary arterial hypertension: A case report. World J Clin Cases 2023; 11: 2780-2787
- 30 Arbelo E, Protonotarios A, Gimeno JR. et al. ESC Scientific Document Group. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J 2023; 44: 3503-3626
- 31 Mutlak D, Lessick J, Reisner SA. et al. Echocardiography-based spectrum of severe tricuspid regurgitation: the frequency of apparently idiopathic tricuspid regurgitation. J Am Soc Echocardiogr 2007; 20: 405-408
- 32 Nath J, Foster E, Heidenreich PA. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol 2004; 43: 405-409
- 33 Stolz L, Kresoja KP, von Stein J. EuroTR Investigators. et al. Impact of Pulmonary Hypertension on Outcomes After Transcatheter Tricuspid Valve Edge-to-Edge Repair. JACC Cardiovasc Interv 2025; 18: 325-336
- 34 Stocker TJ, Hertell H, Orban M. et al. Cardiopulmonary Hemodynamic Profile Predicts Mortality After Transcatheter Tricuspid Valve Repair in Chronic Heart Failure. JACC Cardiovasc Interv 2021; 14: 29-38
- 35 Hemnes AR, Leopold JA, Radeva MK. et al. Clinical characteristics and transplant-free survival across the spectrum of pulmonary vascular disease. J Am Coll Cardiol 2022; 80: 697-718
- 36 Mannino DM, Thorn D, Swensen A. et al. Prevalence and outcomes of diabetes, hypertension, and cardiovascular disease in COPD. Eur Respir J 2008; 32: 962-969
- 37 Eckhardt CM, Balte PP, Barr RG. et al. Lung function impairment and risk of incident heart failure: the NHLBI Pooled Cohorts Study. Eur Heart J 2022; 43: 2196-2208
- 38 Gerges C, Pistritto A-M, Gerges M. et al. Left ventricular filling pressure in chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol 2023; 81: 653-664
- 39 Vints C, Andreotti F, Koskinas KC. et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J 2024; 45: 3415-3537
- 40 Reddy YNV, Carter RE, Obokata M. et al. A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation 2018; 138: 861-870
- 41 Barandiarán Aizpurua AB, Sanders-van Wijk S, Brunner-La Rocca H-P. et al. Validation of the HFA-PEFF score for the diagnosis of heart failure with preserved ejection fraction. Eur J Heart Fail 2020; 22: 413-421
- 42 D’Alto M, Badesch D, Bossone E. et al. A fluid challenge test for the diagnosis of occult heart failure. Chest 2021; 159: 791-797
- 43 van de Bovenkamp AA, Wijkstra N, Oosterveer FPT. et al. The value of passive leg raise during right heart catheterization in diagnosing heart failure with preserved ejection fraction. Circ Heart Fail 2022; 15: e008935
- 44 Agrawal V, D’Alto M, Naeije R. et al. Echocardiographic detection of occult diastolic dysfunction in pulmonary hypertension after fluid challenge. J Am Heart Assoc 2019; 8: e012504
- 45 Baratto C, Caravita S, Soranna D. et al. Current limitations of invasive exercise hemodynamics for the diagnosis of heart failure with preserved ejection fraction. Circ Heart Fail 2021; 14: e007555
- 46 Ho JE, Zern EK, Lau ES. et al. Exercise pulmonary hypertension predicts clinical outcomes in patients with dyspnea on effort. J Am Coll Cardiol 2020; 75: 17-26
- 47 Park DH, Fuge J, Kamp JC. et al. Reassessing Pulmonary Hypertension Classification: Utilizing Criteria for Heart Failure with Preserved Ejection Fraction Instead of Pulmonary Arterial Wedge Pressure. J Clin Med 2024; 13: 7582
- 48 Smiseth OA, Morris DA, Cardim N. et al. Multimodality imaging in patients with heart failure and preserved ejection fraction: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2022; 23: e34-e61
- 49 Opitz CF, Hoeper MM, Gibbs JSR. et al. Pre-capillary, combined, and post-capillary pulmonary hypertension: a pathophysiological continuum. J Am Coll Cardiol 2016; 68: 368-378
- 50 Kuwana M, Blair C, Takahashi T. et al. Initial combination therapy of ambrisentan and tadalafil in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) in the modified intention-to-treat population of the AMBITION study: post hoc analysis. Ann Rheum Dis 2020; 79: 626-634
- 51 Swinnen K, Verstraete K, Baratto C. et al. Machine learning to differentiate pulmonary hypertension due to left heart disease from pulmonary arterial hypertension. ERJ Open Res 2023; 9: 00229-2023
- 52 Huston JH, Maron BA, French J. et al. Association of mild echocardiographic pulmonary hypertension with mortality and right ventricular function. JAMA Cardiol 2019; 4: 1112-1121
- 53 Strange G, Stewart S, Celermajer DS. et al. Threshold of pulmonary hypertension associated with increased mortality. J Am Coll Cardiol 2019; 73: 2660-2672
- 54 Chen ZW, Chung YW, Cheng JF. et al. Right ventricular-vascular uncoupling predicts pulmonary hypertension in clinically diagnosed heart failure with preserved ejection fraction. J Am Heart Assoc 2024; 13: e030025
- 55 Ho J, Zern EK, Wooster L. et al. Differential clinical profiles, exercise responses, and outcomes associated with existing HFpEF definitions. Circulation 2019; 140: 353-365
- 56 Shah SJ, Borlaug BA, Chung ES. REDUCE LAP-HF II investigators. et al. Atrial shunt device for heart failure with preserved and mildly reduced ejection fraction (REDUCE LAP-HF II): a randomised, multicentre, blinded, sham-controlled trial. Lancet 2022; 399: 1130-1140
- 57 McDonagh TA, Metra M, Adamo M. et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42: 3599-3526
- 58 Schupp JC, Adams TS, Cosme Jr C. et al. Integrated Single-Cell Atlas of Endothelial Cells of the Human Lung. Circulation 2021; 144: 286-302
- 59 Sikkema L, Ramírez-Suástegui C, Strobl DC. et al. An integrated cell atlas of the lung in health and disease. Nat Med 2023; 29: 1563-1577
- 60 Rafikov R, de Jesus Perez V, Dekan A. et al. Deciphering the Complexities of Pulmonary Hypertension: The Emergent Role of Single-Cell Omics. Am J Respir Cell Mol Biol 2024; 72: 32-40
- 61 Raredon MSB, Adams TS, Suhail Y. et al. Single-cell connectomic analysis of adult mammalian lungs. Sci Adv 2019; 5: eaaw3851
- 62 Rossitto G, Mary S, McAllister C. et al. Reduced Lymphatic Reserve in Heart Failure With Preserved Ejection Fraction. J Am Coll Cardiol 2020; 76: 2817-2829
