Subscribe to RSS
DOI: 10.1055/a-2624-7634
Variability of segmented prostate volume on MRI: impact on PSA density for prostate cancer diagnosis
Variabilität des segmentierten Prostatavolumens im MRT: Einfluss auf die PSA-Dichte für die Prostatakrebsdiagnose
Abstract
Purpose
PSA density (PSAd), based on prostate volume (PV), is a decision-making parameter for prostate cancer (PCa) diagnosis and risk stratification. We assessed variability in prostate manual segmentation on MRI and its impact on PV and PSAd.
Materials and Methods
We retrospectively analyzed 68 treatment-naïve patients, aged 66.2±6.9 years, with increased PSA and/or positive digital endorectal examination who underwent MRI, with available biopsy/follow-up. Three radiologists (R1, R2, R3) manually segmented the gland on T2-weighted images slice-by-slice. Dice similarity coefficient (DSC), Welch’s t-test, and 95% confidence intervals (CIs) were used.
Results
Of 68 patients with a PSA of 7.59±4.80 ng/mL, 38 had biopsy-confirmed PCa, and the remaining 30 were negative on biopsy/follow-up. The segmentation time per patient ranged from 4 to 7 min. Pairs R1-R2, R1-R3, and R2-R3 showed a different number of segmented slices (p<0.001) and PV (p<0.001). DSC for prostate gland segmentation ranged from 0.871 to 0.890. An outlier (prostatitis with PSA 35 ng/mL) was excluded from PSA/PSAd analysis. Based on segmentation by R1, the PSA was 7.37±3.70 ng/mL and PSAd was 0.124±0.070 ng/mL/mL in the 38 patients with PCa, while these values were 6.91±2.79 ng/mL and 0.111±0.062 ng/mL/mL, respectively, in the 29 patients without PCa. Using the threshold of ≥0.15 ng/mL/mL, variations in segmented PV impacted PSAd-based classification, resulting in 1 false negative for R1 and another false negative for R2 (false-negative rate for both 1/38, 2.63%, 95% CI 0.10–13.8%).
Conclusion
Segmentation of PV is a time-intensive task. Inter-reader variability can impact PSAd-based diagnosis of PCa. Automated prostate segmentation methods are welcome.
Key Points
-
Manual prostate segmentation is a time-consuming task performed in clinical practice
-
Inter-reader variability of PV segmentation was low, with high DSC values
-
Minor PV differences led to false-negative PSAd classification in 2.63% cases.
Citation Format
-
Colarieti A, Venturi A, Cressoni M et al. Variability of segmented prostate volume on MRI: impact on PSA density for prostate cancer diagnosis. Rofo 2025; DOI 10.1055/a-2624-7634
Zusammenfassung
Zweck
Die PSA-Dichte (PSAd), basierend auf dem Prostatavolumen (PV), ist ein entscheidungsrelevanter Parameter für die Diagnose von Prostatakrebs (PCa) und die Risikostratifikation. Wir untersuchten die Variabilität der manuellen Segmentierung der Prostata in der MRT und deren Einfluss auf PV und PSAd.
Material und Methoden
Retrospektiv wurden 68 behandlungsnaive Patienten im Alter von 66,2 ± 6,9 Jahren mit erhöhtem PSA und/oder positivem digital-rektalem Befund, die sich einer MRT unterzogen hatten und bei denen Biopsie/Nachbeobachtung verfügbar war, analysiert. Drei Radiologen (R1, R2, R3) segmentierten die Drüse manuell scheibenweise auf T2-gewichteten Bildern. Dabei wurden der Dice-Ähnlichkeitskoeffizient (DSC), Welch’s t-Test und 95%-Konfidenzintervalle (CIs) verwendet.
Ergebnisse
Von den 68 Patienten mit einem PSA von 7,59 ± 4,80 ng/mL hatten 38 einen bioptisch bestätigten PCa, während bei den übrigen 30 Patienten Biopsie/Nachbeobachtung negativ war. Die Segmentierungszeit pro Patient lag zwischen 4 und 7 Minuten. Die Paare R1–R2, R1–R3 und R2–R3 zeigten signifikante Unterschiede in der Anzahl segmentierter Schnitte (p < 0,001) sowie im PV (p < 0,001). Der DSC für die Segmentierung der Prostatadrüse lag zwischen 0,871 und 0,890. Ein Ausreißer (Prostatitis mit PSA 35 ng/mL) wurde aus der PSA/PSAd-Analyse ausgeschlossen. Basierend auf der Segmentierung durch R1 betrug bei den 38 PCa-Patienten das PSA 7,37 ± 3,70 ng/mL und die PSAd 0,124 ± 0,070 ng/mL/mL; bei den 29 Patienten ohne PCa lagen die Werte bei 6,91 ± 2,79 ng/mL bzw. 0,111 ± 0,062 ng/mL/mL. Bei Anwendung der Schwelle von ≥0,15 ng/mL/mL beeinflussten Variationen im segmentierten PV die PSAd-basierte Klassifikation, was zu einem falsch-negativen Befund bei R1 und zu einem weiteren falsch-negativen Befund bei R2 führte (falsch-negatives Rate für beide 1/38, 2,63%, 95%-CI 0,10–13,8%).
Schlussfolgerung
Die manuelle Segmentierung des PV ist sehr zeitintensiv. Die Inter-Reader-Variabilität kann die PSAd-basierte Diagnose des PCa beeinflussen. Methoden für eine automatisierte Segmentierung der Prostata sind daher willkommen.
Schlüsselpunkte
-
Die manuelle Prostata-Segmentierung ist zeitaufwendig im klinischen Alltag.
-
Geringe Variabilität zwischen Befundern bezüglich der PV-Segmentierung, mit hohen DSC-Werten.
-
Kleine Volumenabweichungen führten zu 2,63% falsch-negativen PSAd-Ergebnissen.
Keywords
Digital Rectal Examination - Multiparametric Magnetic Resonance Imaging - prostate - Prostate-Specific Antigen - Prostatic NeoplasmsPublication History
Received: 16 March 2025
Accepted after revision: 27 May 2025
Article published online:
23 June 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Sung H, Ferlay J, Siegel RL. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209-249
- 2 Ferlay J, Colombet M, Soerjomataram I. et al. Cancer statistics for the year 2020: An overview. Int J Cancer 2021;
- 3 de Rooij M, Israel B, Tummers M. et al. ESUR/ESUI consensus statements on multi-parametric MRI for the detection of clinically significant prostate cancer: quality requirements for image acquisition, interpretation and radiologists’ training. Eur Radiol 2020; 30: 5404-5416
- 4 Sushentsev N, Abrego L, Colarieti A. et al. Using a Recurrent Neural Network To Inform the Use of Prostate-specific Antigen (PSA) and PSA Density for Dynamic Monitoring of the Risk of Prostate Cancer Progression on Active Surveillance. Eur Urol Open Sci 2023; 52: 36-39
- 5 Mitterberger M, Horninger W, Aigner F. et al. Ultrasound of the prostate. Cancer Imaging 2010; 10: 40-48
- 6 Huang Foen Chung JW, de Vries SH, Raaijmakers R. et al. Prostate volume ultrasonography: the influence of transabdominal versus transrectal approach, device type and operator. Eur Urol 2004; 46: 352-356
- 7 Nyholm T, Jonsson J, Soderstrom K. et al. Variability in prostate and seminal vesicle delineations defined on magnetic resonance images, a multi-observer, -center and -sequence study. Radiat Oncol 2013; 8: 126
- 8 Aprikian S, Luz M, Brimo F. et al. Improving ultrasound-based prostate volume estimation. BMC Urol 2019; 19: 68
- 9 Becker AS, Chaitanya K, Schawkat K. et al. Variability of manual segmentation of the prostate in axial T2-weighted MRI: A multi-reader study. Eur J Radiol 2019; 121: 108716
- 10 Turkbey B, Rosenkrantz AB, Haider MA. et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol 2019; 76: 340-351
- 11 Sosna J, Rofsky NM, Gaston SM. et al. Determinations of prostate volume at 3-Tesla using an external phased array coil: comparison to pathologic specimens. Acad Radiol 2003; 10: 846-853
- 12 Lee DK, Sung DJ, Kim CS. et al. Three-Dimensional Convolutional Neural Network for Prostate MRI Segmentation and Comparison of Prostate Volume Measurements by Use of Artificial Neural Network and Ellipsoid Formula. AJR Am J Roentgenol 2020; 214: 1229-1238
- 13 Jeong CW, Park HK, Hong SK. et al. Comparison of prostate volume measured by transrectal ultrasonography and MRI with the actual prostate volume measured after radical prostatectomy. Urol Int 2008; 81: 179-185
- 14 Morey RA, Petty CM, Xu Y. et al. A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage 2009; 45: 855-866
- 15 Turkbey B, Fotin SV, Huang RJ. et al. Fully automated prostate segmentation on MRI: comparison with manual segmentation methods and specimen volumes. AJR Am J Roentgenol 2013; 201: W720-729
- 16 Smith WL, Lewis C, Bauman G. et al. Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR. Int J Radiat Oncol Biol Phys 2007; 67: 1238-1247
- 17 Bezinque A, Moriarity A, Farrell C. et al. Determination of Prostate Volume: A Comparison of Contemporary Methods. Acad Radiol 2018; 25: 1582-1587
- 18 Montagne S, Hamzaoui D, Allera A. et al. Challenge of prostate MRI segmentation on T2-weighted images: inter-observer variability and impact of prostate morphology. Insights Imaging 2021; 12: 71
- 19 Chen ME, Troncoso P, Johnston D. et al. Prostate cancer detection: relationship to prostate size. Urology 1999; 53: 764-768
- 20 Garvey B, Turkbey B, Truong H. et al. Clinical value of prostate segmentation and volume determination on MRI in benign prostatic hyperplasia. Diagn Interv Radiol 2014; 20: 229-233
- 21 Sanders JW, Mok H, Hanania AN. et al. Computer-aided segmentation on MRI for prostate radiotherapy, Part I: Quantifying human interobserver variability of the prostate and organs at risk and its impact on radiation dosimetry. Radiother Oncol 2022; 169: 124-131
- 22 Fernandes MC, Yildirim O, Woo S. et al. The role of MRI in prostate cancer: current and future directions. MAGMA 2022; 35: 503-521
- 23 Hamzaoui D, Montagne S, Granger B. et al. Prostate volume prediction on MRI: tools, accuracy and variability. Eur Radiol 2022; 32: 4931-4941
- 24 Moliere S, Hamzaoui D, Granger B. et al. Reference standard for the evaluation of automatic segmentation algorithms: Quantification of inter observer variability of manual delineation of prostate contour on MRI. Diagn Interv Imaging 2024; 105: 65-73
- 25 Langkilde F, Masaba P, Edenbrandt L. et al. Manual prostate MRI segmentation by readers with different experience: a study of the learning progress. Eur Radiol 2024;
- 26 Oishi M, Shin T, Ohe C. et al. Which Patients with Negative Magnetic Resonance Imaging Can Safely Avoid Biopsy for Prostate Cancer?. J Urol 2019; 201: 268-276
- 27 Di Leo G, Sardanelli F. Statistical significance: p value, 0.05 threshold, and applications to radiomics-reasons for a conservative approach. Eur Radiol Exp 2020; 4: 18
- 28 Distler FA, Radtke JP, Bonekamp D. et al. The Value of PSA Density in Combination with PI-RADS for the Accuracy of Prostate Cancer Prediction. J Urol 2017; 198: 575-582
- 29 Mazaheri Y, Goldman DA, Di Paolo PL. et al. Comparison of prostate volume measured by endorectal coil MRI to prostate specimen volume and mass after radical prostatectomy. Acad Radiol 2015; 22: 556-562
- 30 Ghafoor S, Becker AS, Woo S. et al. Comparison of PI-RADS Versions 2.0 and 2.1 for MRI-based Calculation of the Prostate Volume. Acad Radiol 2021; 28: 1548-1556
- 31 An JY, Fowler KJ. Accurate Prostate Volumes from Manual Calculations – A Comparison of PI-RADS v2 and v2.1 Measurement Techniques. Acad Radiol 2021; 28: 1557-1558
- 32 Di Donna A, Bazzocchi M, Guerra UP. et al. The role of the absolute value and “density” of the prostate-specific antigen estimated echographically in the selection of patients to undergo a biopsy in suspected prostatic carcinoma. A comparison between PSA, palpation and echography in 95 patients undergoing echo-guided endorectal prostatic biopsy. Radiol Med 1993; 85: 84-89
- 33 Schoots IG, Roobol MJ, Nieboer D. et al. Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol 2015; 68: 438-450
- 34 Pellegrino F, Tin AL, Martini A. et al. Prostate-specific Antigen Density Cutoff of 0.15 ng/ml/cc to Propose Prostate Biopsies to Patients with Negative Magnetic Resonance Imaging: Efficient Threshold or Legacy of the Past?. Eur Urol Focus 2023; 9: 291-297
- 35 Li H, Lee CH, Chia D. et al. Machine Learning in Prostate MRI for Prostate Cancer: Current Status and Future Opportunities. Diagnostics (Basel) 2022; 12
- 36 Correia ETO, Baydoun A, Li Q. et al. Emerging and anticipated innovations in prostate cancer MRI and their impact on patient care. Abdom Radiol (NY) 2024; 49: 3696-3710