RSS-Feed abonnieren

DOI: 10.1055/a-2624-2776
Ischemic Preconditioning on Secondary Arterial and Venous Ischemia in Pedicled Axial Flaps in Wistar Rats
Funding None.

Abstract
Background Microvascular complications, particularly secondary arterial and venous ischemia, pose significant challenges in reconstructive surgery. This study investigates the potential protective effects of ischemic preconditioning on flap survival, anatomopathological alterations, and immunological responses in pedicled axial flaps subjected to secondary ischemia.
Methods Adult male Wistar rats underwent arterial or venous ischemia, with and without ischemic preconditioning. Histological assessments, immunohistochemistry studies, and biochemical analyses were conducted to evaluate the impact of ischemic preconditioning on inflammatory processes and tissue damage.
Results Ischemic preconditioning demonstrated a statistically significant decrease in histological lesions, with reductions of 56% in arterial and 47% in venous ischemia, mainly associated with a reduction of inflammatory changes and necrosis processes. Immunological analyses revealed a significant reduction in IgM levels induced by venous ischemia, and a consistent decrease in inflammatory cytokines (interleukin-1 and tumor necrosis factor alpha) in both arterial and venous ischemia following preconditioning. Furthermore, F2-isoprostane levels indicated a lower production of oxidative stress markers in preconditioned flaps.
Conclusion This study highlights the beneficial impact of ischemic preconditioning on flap viability, providing robust evidence of reduced histological lesions, inflammation, and oxidative stress in both arterial and venous secondary ischemia scenarios. These findings support the potential clinical relevance of incorporating ischemic preconditioning strategies to improve outcomes in microvascular reconstructive surgery.
Note
Animal use described here complied with EU Directive 2010/63 and Spanish Government RD 53/2013 on the protection of animals used in experimentation with the permission from the Animal Welfare Committee (University Hospital of Burgos, reference: CEBA 22).
Publikationsverlauf
Eingereicht: 13. Oktober 2024
Angenommen: 20. März 2025
Artikel online veröffentlicht:
16. Juni 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Wang WZMD, Baynosa RCMD, Zamboni WA. Update on ischemia-reperfusion injury for the plastic surgeon: 2011. Plast Reconstr Surg 2011; 128 (06) 685e-692e
- 2 Hou J, Yuan Y, Chen P. et al. Pathological roles of oxidative stress in cardiac microvascular injury. Curr Probl Cardiol 2023; 48 (01) 101399
- 3 Fernández AR, Sánchez-Tarjuelo R, Cravedi P, Ochando J, López-Hoyos M. Review: ischemia reperfusion injury-a translational perspective in organ transplantation. Int J Mol Sci 2020; 21 (22) 8549
- 4 Odake K, Tsujii M, Iino T, Chiba K, Kataoka T, Sudo A. Febuxostat treatment attenuates oxidative stress and inflammation due to ischemia-reperfusion injury through the necrotic pathway in skin flap of animal model. Free Radic Biol Med 2021; 177 (177) 238-246
- 5 Sears ED, Chung KC. Replantation of finger avulsion injuries: a systematic review of survival and functional outcomes. J Hand Surg Am 2011; 36 (04) 686-694
- 6 Siemionow M, Arslan E. Ischemia/reperfusion injury: a review in relation to free tissue transfers. Microsurgery 2004; 24 (06) 468-475
- 7 Angel MF, Mellow CG, Knight KR, O'Brien BM. Secondary ischemia time in rodents: contrasting complete pedicle interruption with venous obstruction. Plast Reconstr Surg 1990; 85 (05) 789-793 , discussion 794–795
- 8 Copelli C, Tewfik K, Cassano L. et al. Gestione del fallimento dei lembi liberi in chirurgia testa-collo. Acta Otorhinolaryngol Ital 2017; 37 (05) 387-392
- 9 Lese I, Biedermann R, Constantinescu M, Grobbelaar AO, Olariu R. Predicting risk factors that lead to free flap failure and vascular compromise: a single unit experience with 565 free tissue transfers. J Plast Reconstr Aesthet Surg 2021; 74 (03) 512-522
- 10 Wang W, Ong A, Vincent AG, Shokri T, Scott B, Ducic Y. Flap failure and salvage in head and neck reconstruction. Semin Plast Surg 2020; 34 (04) 314-320
- 11 Chen KT, Mardini S, Chuang DC. et al. Timing of presentation of the first signs of vascular compromise dictates the salvage outcome of free flap transfers. Plast Reconstr Surg 2007; 120 (01) 187-195
- 12 Mirzabeigi MN, Wang T, Kovach SJ, Taylor JA, Serletti JM, Wu LC. Free flap take-back following postoperative microvascular compromise: predicting salvage versus failure. Plast Reconstr Surg 2012; 130 (03) 579-589
- 13 Farwell DG, Reilly DF, Weymuller Jr EA, Greenberg DL, Staiger TO, Futran NA. Predictors of perioperative complications in head and neck patients. Arch Otolaryngol Head Neck Surg 2002; 128 (05) 505-511
- 14 Bui DT, Cordeiro PG, Hu QY, Disa JJ, Pusic A, Mehrara BJ. Free flap reexploration: indications, treatment, and outcomes in 1193 free flaps. Plast Reconstr Surg 2007; 119 (07) 2092-2100
- 15 Zhang F, Oswald T, Holt J, Gerzenshtein J, Lei MP, Lineaweaver WC. Regulation of inducible nitric oxide synthase in ischemic preconditioning of muscle flap in a rat model. Ann Plast Surg 2004; 52 (06) 609-613
- 16 Bushell AJ, Klenerman L, Taylor S. et al. Ischaemic preconditioning of skeletal muscle. 1. Protection against the structural changes induced by ischaemia/reperfusion injury. J Bone Joint Surg Br 2002; 84 (08) 1184-1188
- 17 Adanali G, Ozer K, Siemionow M. Early and late effects of ischemic preconditioning on microcirculation of skeletal muscle flaps. Plast Reconstr Surg 2002; 109 (04) 1344-1351
- 18 Petry JJ, Wortham KA. The anatomy of the epigastric flap in the experimental rat. Plast Reconstr Surg 1984; 74 (03) 410-413
- 19 Collins TJ. ImageJ for microscopy. Biotechniques 2007; 43 (1, Suppl): 25-30
- 20 Hjortdal VE, Hansen ES, Hauge E. Myocutaneous flap ischemia: flow dynamics following venous and arterial obstruction. Plast Reconstr Surg 1992; 89 (06) 1083-1091
- 21 Hjortdal VE, Sinclair T, Kerrigan CL, Solymoss S. Venous ischemia in skin flaps: microcirculatory intravascular thrombosis. Plast Reconstr Surg 1994; 93 (02) 366-374
- 22 Marzella L, Jesudass RR, Manson PN, Myers RA, Bulkley GB. Functional and structural evaluation of the vasculature of skin flaps after ischemia and reperfusion. Plast Reconstr Surg 1988; 81 (05) 742-750
- 23 Meldon JH, Garby L. The blood oxygen transport system. A numerical simulation of capillary-tissue respiratory gas exchange. Acta Med Scand Suppl 1975; 578: 19-29
- 24 Chafin B, Belmont MJ, Quraishi H, Clovis N, Wax MK. Effect of clamp versus anastomotic-induced ischemia on critical ischemic time and survival of rat epigastric fasciocutaneous flap. Head Neck 1999; 21 (03) 198-203
- 25 Litrico L, Aid R, Youkharibache A, Letourneur D, Cristofari S. Effect of ischemic preconditioning on skeletal tissue tolerance after warm venous ischemia. Ann Chir Plast Esthet 2023; 68 (04) 315-325
- 26 Harashina T, Sawada Y, Watanabe S. The relationship between venous occlusion time in island flaps and flap survivals. Plast Reconstr Surg 1977; 60 (01) 92-95
- 27 Kerrigan CL, Wizman P, Hjortdal VE, Sampalis J. Global flap ischemia: a comparison of arterial versus venous etiology. Plast Reconstr Surg 1994; 93 (07) 1485-1495 , discussion 1496–1497
- 28 Su CT, Im MJ, Hoopes JE. Tissue glucose and lactate following vascular occlusion in island skin flaps. Plast Reconstr Surg 1982; 70 (02) 202-205
- 29 Hjortdal VE, Hauge E, Hansen ES. Differential effects of venous stasis and arterial insufficiency on tissue oxygenation in myocutaneous island flaps: an experimental study in pigs. Plast Reconstr Surg 1992; 89 (03) 521-529
- 30 Hedén P, Sollevi A. Circulatory and metabolic events in pig island skin flaps after arterial or venous occlusion. Plast Reconstr Surg 1989; 84 (03) 475-481 , discussion 482–483
- 31 Zhang F, Hu EC, Topp S, Lei M, Chen W, Lineaweaver WC. Proinflammatory cytokines gene expression in skin flaps with arterial and venous ischemia in rats. J Reconstr Microsurg 2006; 22 (08) 641-647
- 32 Dhar SC, Taylor GI. The delay phenomenon: the story unfolds. Plast Reconstr Surg 1999; 104 (07) 2079-2091
- 33 Xiao W, Ng S, Li H. et al. An innovative and economical device for ischemic preconditioning of the forehead flap prior to pedicle division: a comparative study. J Reconstr Microsurg 2022; 38 (09) 703-710
- 34 Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74 (05) 1124-1136
- 35 Filaretova L, Komkova O, Sudalina M, Yarushkina N. Noninvasive remote ischemic preconditioning may protect the gastric mucosa against ischemia -reperfusion-induced injury through involvement of glucocorticoids. Front Pharmacol 2021; 12: 682643
- 36 Wong YL, Lautenschläger I, Hummitzsch L. et al. Effects of different ischemic preconditioning strategies on physiological and cellular mechanisms of intestinal ischemia/reperfusion injury: implication from an isolated perfused rat small intestine model. PLoS One 2021; 16 (09) e0256957
- 37 Sárközy M, Márványkövi FM, Szűcs G. et al. Ischemic preconditioning protects the heart against ischemia-reperfusion injury in chronic kidney disease in both males and females. Biol Sex Differ 2021; 12 (01) 49
- 38 Tanaka K, Ludwig LM, Krolikowski JG. et al. Isoflurane produces delayed preconditioning against myocardial ischemia and reperfusion injury: role of cyclooxygenase-2. Anesthesiology 2004; 100 (03) 525-531
- 39 Kloner RA, Shi J, Dai W, Carreno J, Zhao L. Remote ischemic conditioning in acute myocardial infarction and shock states. J Cardiovasc Pharmacol Ther 2020; 25 (02) 103-109
- 40 Kim HW, Shin JA, Kim HJ, Ahn JH, Park EM. Enhanced repair processes and iron uptake by ischemic preconditioning in the brain during the recovery phase after ischemic stroke. Brain Res 2021; 1750: 147172
- 41 Shake JG, Peck EA, Marban E. et al. Pharmacologically induced preconditioning with diazoxide: a novel approach to brain protection. Ann Thorac Surg 2001; 72 (06) 1849-1854
- 42 Hao Y, Xin M, Feng L. et al. Review cerebral ischemic tolerance and preconditioning: methods, mechanisms, clinical applications, and challenges. Front Neurol 2020; 11: 812
- 43 Menting TP, Wever KE, Ozdemir-van Brunschot DM, Van der Vliet DJA, Rovers MM, Warle MC. Cochrane Kidney and Transplant Group. Ischaemic preconditioning for the reduction of renal ischaemia reperfusion injury. Cochrane Database Syst Rev 2017; 3 (03) CD010777
- 44 Xue J, Zhu K, Cao P. et al. Ischemic preconditioning-induced protective effect for promoting angiogenesis in renal ischemia-reperfusion injury by regulating miR-376c-3p/HIF-1α/VEGF axis in male rats. Life Sci 2022; 299: 120357
- 45 Zhang H, Zhang T, Zhong F, Xia X. Effects of remote ischemic preconditioning on liver injury following hepatectomy: a systematic review and meta-analysis of randomized control trials. Surg Today 2021; 51 (08) 1251-1260
- 46 Mounsey RA, Pang CY, Forrest C. Preconditioning: a new technique for improved muscle flap survival. Otolaryngol Head Neck Surg 1992; 107 (04) 549-552
- 47 Zahir KS, Syed SA, Zink JR, Restifo RJ, Thomson JG. Ischemic preconditioning improves the survival of skin and myocutaneous flaps in a rat model. Plast Reconstr Surg 1998; 102 (01) 140-150 , discussion 151–152
- 48 Contaldo C, Harder Y, Plock J, Banic A, Jakob SM, Erni D. The influence of local and systemic preconditioning on oxygenation, metabolism and survival in critically ischaemic skin flaps in pigs. J Plast Reconstr Aesthet Surg 2007; 60 (11) 1182-1192
- 49 Cinpolat A, Bektas G, Coskunfirat N, Rizvanovic Z, Coskunfirat OK. Comparing various surgical delay methods with ischemic preconditioning in the rat TRAM flap model. J Reconstr Microsurg 2014; 30 (05) 335-342
- 50 Wang WZ. Investigation of reperfusion injury and ischemic preconditioning in microsurgery. Microsurgery 2009; 29 (01) 72-79
- 51 Küntscher MV, Schirmbeck EU, Menke H, Klar E, Gebhard MM, Germann G. Ischemic preconditioning by brief extremity ischemia before flap ischemia in a rat model. Plast Reconstr Surg 2002; 109 (07) 2398-2404
- 52 Harder Y, Amon M, Laschke MW. et al. An old dream revitalised: preconditioning strategies to protect surgical flaps from critical ischaemia and ischaemia-reperfusion injury. J Plast Reconstr Aesthet Surg 2008; 61 (05) 503-511
- 53 Wang WZ, Anderson G, Firrell JC, Tsai TM. Ischemic preconditioning versus intermittent reperfusion to improve blood flow to a vascular isolated skeletal muscle flap of rats. J Trauma 1998; 45 (05) 953-959
- 54 Kinnunen I, Laurikainen E, Schrey A, Laippala P, Aitasalo K. Effect of acute ischemic preconditioning on blood-flow response in the epigastric pedicled rat flap. J Reconstr Microsurg 2002; 18 (01) 61-68
- 55 Matsumura H, Yoshizawa N, Vedder NB, Watanabe K. Preconditioning of the distal portion of a rat random-pattern skin flap. Br J Plast Surg 2001; 54 (01) 58-61
- 56 Zahir TM, Zahir KS, Syed SA, Restifo RJ, Thomson JG. Ischemic preconditioning of musculocutaneous flaps: effects of ischemia cycle length and number of cycles. Ann Plast Surg 1998; 40 (04) 430-435
- 57 Krag AE, Eschen GT, Damsgaard TE, Sværdborg M, Steiniche T, Kiil BJ. Remote ischemic preconditioning attenuates acute inflammation of experimental musculocutaneous flaps following ischemia-reperfusion injury. Microsurgery 2017; 37 (02) 148-155
- 58 Marian CF, Jiga LP, Ionac M. Ischemic preconditioning of free muscle flaps: an experimental study. Microsurgery 2005; 25 (07) 524-531
- 59 Yildiz K, Karsidag S, Akcal A. et al. Comparison of the flap survival with ischemic preconditioning on different pedicles under varied ischemic intervals in a rat bilateral pedicled flap model. Microsurgery 2014; 34 (02) 129-135
- 60 Dikici MB, Coskunfirat OK, Uslu A. Effect of cyclooxygenase-2 on ischemic preconditioning of skin flaps. Ann Plast Surg 2009; 63 (01) 100-104
- 61 Shafighi M, Fathi AR, Brun C. et al. Topical application of 17β-estradiol (E2) improves skin flap survival through activation of endothelial nitric oxide synthase in rats. Wound Repair Regen 2012; 20 (05) 740-747
- 62 Carroll CM, Carroll SM, Overgoor ML, Tobin G, Barker JH. Acute ischemic preconditioning of skeletal muscle prior to flap elevation augments muscle-flap survival. Plast Reconstr Surg 1997; 100 (01) 58-65
- 63 Lee J-H, You H-J, Lee T-Y, Kang HJ. Current status of experimental animal skin flap models: ischemic preconditioning and molecular factors. Int J Mol Sci 2022; 23 (09) 5234
- 64 Ottomann C, Küntscher M, Hartmann B, Antonic V, Kuntscher M, Hartmann B, Antonic V. Ischaemic preconditioning suppresses necrosis of adipocutaneous flaps in a diabetic rat model regardless of the manner of preischaemia induction. Dermatol Res Pract 2017; 2017: 4137597
- 65 Demiröz A, Derebaşınlıoğlu H, Ercan A. et al. Comparison of ischemic preconditioning and systemic piracetam for prevention of ischemia-reperfusion injury in musculocutaneous flaps. J Reconstr Microsurg 2021; 37 (04) 322-335
- 66 Masa I, Casado-Sánchez C, Crespo-Lora V, Ballestín A. Effects of ischemic preconditioning and C1 esterase inhibitor administration following ischemia-reperfusion injury in a rat skin flap model. J Reconstr Microsurg 2021; 37 (03) 242-248
- 67 Huang L. The impact of lidocaine on secondary ischemia injury of skin flaps. Transplant Proc 2011; 43 (07) 2550-2553
- 68 Huang L. Beneficial effect of botulinum toxin A on secondary ischaemic injury of skin flaps in rats. Br J Oral Maxillofac Surg 2018; 56 (02) 144-147
- 69 Shah AA, Arias JE, Thomson JG. The effect of ischemic preconditioning on secondary ischemia in myocutaneous flaps. J Reconstr Microsurg 2009; 25 (09) 527-531
- 70 Coskunfirat OK, Ozkan O, Dikici MB. The effect of ischemic preconditioning on secondary ischemia in skin flaps. Ann Plast Surg 2006; 57 (04) 431-434
- 71 Berkane Y, Alana Shamlou A, Reyes J. et al. The superficial inferior epigastric artery axial flap to study ischemic preconditioning effects in a rat model. J Vis Exp 2023; (191)
- 72 Wang H, Li Z, Liu X. Effects of various protocols of ischemic preconditioning on rat tram flaps. Microsurgery 2008; 28 (01) 37-43
- 73 Dacho AK, Dietz A, Mueller K. Histological effect on the adipocutaneous flap in rats after preconditioning with 2-chloro-N(6) -cyclopentyladenosine. Head Neck 2014; 36 (08) 1189-1199
- 74 Attkiss KJ, Suski M, Hunt TK, Buncke HJ. Ischemic preconditioning of skeletal muscle improves tissue oxygenation during reperfusion. J Reconstr Microsurg 1999; 15 (03) 223-228
- 75 Shimizu M, Saxena P, Konstantinov IE. et al. Remote ischemic preconditioning decreases adhesion and selectively modifies functional responses of human neutrophils. J Surg Res 2010; 158 (01) 155-161
- 76 Bonetti NR, Diaz-Cañestro C, Liberale L. et al. Tumour necrosis factor-α inhibition improves stroke outcome in a mouse model of rheumatoid arthritis. Sci Rep 2019; 9 (01) 2173
- 77 Zhou H, Toan S. Pathological roles of mitochondrial oxidative stress and mitochondrial dynamics in cardiac microvascular ischemia/reperfusion injury. Biomolecules 2020; 10 (01) 85
- 78 Griffiths HR, Møller L, Bartosz G. et al. Biomarkers. Mol Aspects Med 2002; 23 (1-3): 101-208
- 79 Lorenzano S, Rost NS, Khan M. et al. Oxidative stress biomarkers of brain damage: hyperacute plasma F2-isoprostane predicts infarct growth in stroke. Stroke 2018; 49 (03) 630-637
- 80 Czerska M, Zieliński M, Gromadzińska J. Isoprostanes - a novel major group of oxidative stress markers. Int J Occup Med Environ Health 2016; 29 (02) 179-190
- 81 Van't Erve TJ, Lih FB, Jelsema C. et al. Reinterpreting the best biomarker of oxidative stress: the 8-iso-prostaglandin F2α/prostaglandin F2α ratio shows complex origins of lipid peroxidation biomarkers in animal models. Free Radic Biol Med 2016; 95: 65-73
- 82 Morrow JD. Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterioscler Thromb Vasc Biol 2005; 25 (02) 279-286
- 83 Ng ML, Ang X, Yap KY. et al. Novel oxidative stress biomarkers with risk prognosis values in heart failure. Biomedicines 2023; 11 (03) 917