RSS-Feed abonnieren
DOI: 10.1055/a-2624-1474
Trinkmenge und CKD – ist „viel“ wirklich gesund?
Autor*innen
Zusammenfassung
Die Frage nach der richtigen Trinkmenge ist schon seit Längerem zu einer Frage des Lifestyles geworden und von einer evidenzbasierten Diskussion entkoppelt. Nicht nur die gut gemeinten Ratschläge vieler Eltern an ihre Kinder oder von Enkeln an die Großeltern, auch die tägliche Werbung suggeriert, dass es gesund wäre, „viel“ zu trinken, und dies nahezu alle gesundheitlichen Probleme fernhalten oder bei deren Existenz zur Heilung mindestens beitragen würde. In diesem Artikel werden die physiologischen Hintergründe des Trinkens von Wasser im Gegensatz zur Salzaufnahme, die Aspekte verschiedener Getränke und die Daten zu den Effekten verschiedener Trinkstrategien auf renale Endpunkte mit besonderem Fokus auf Nierenpatienten diskutiert und zusammenfasst.
Publikationsverlauf
Artikel online veröffentlicht:
11. Dezember 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Hoffmann U, Rueckner A, Nickel O. et al. Acute kidney injury and hyponatremia in hospitalized patients with rotavirus infection. medRxiv. 2025 Im Internet: https://www.medrxiv.org/content/10.1101/2025.07.21.25331655v1
- 2 Luft FC. Salz- und Wasserhaushalt für den klinischen Alltag. Internist 1998; 39: 804-809
- 3 Manz F, Johner SA, Wentz A. et al. Water balance throughout the adult life span in a German population. Br J Nutr 2012; 107: 1673-1681
- 4 Braun H, von Andrian-Werburg J, Malisova O. et al. Differing Water Intake and Hydration Status in Three European Countries—A Day-to-Day Analysis. Nutrients 2019; 11: 773
- 5 Hooton TM, Vecchio M, Iroz A. et al. Effect of Increased Daily Water Intake in Premenopausal Women With Recurrent Urinary Tract Infections: A Randomized Clinical Trial. JAMA Intern Med 2018; 178: 1509
- 6 Bao Y, Tu X, Wei Q. Water for preventing urinary stones. Cochrane Database Syst Rev 2020; 2020: CD004292
- 7 Qaseem A, Dallas P, Forciea MA. et al. Dietary and Pharmacologic Management to Prevent Recurrent Nephrolithiasis in Adults: A Clinical Practice Guideline From the American College of Physicians. Ann Intern Med 2014; 161: 659-667
- 8 Wang Z, Zhang Y, Wei W. Effect of dietary treatment and fluid intake on the prevention of recurrent calcium stones and changes in urine composition: A meta-analysis and systematic review. PLoS One 2021; 16: e0250257
- 9 Hakam N, Fuentes JLG, Nabavizadeh B. et al. Outcomes in Randomized Clinical Trials Testing Changes in Daily Water Intake. JAMA Netw Open 2024; 7: e2447621
- 10 Wang JS, Chiang HY, Chen HL. et al. Association of water intake and hydration status with risk of kidney stone formation based on NHANES 2009–2012 cycles. Public Heal Nutr 2022; 25: 2403-2414
- 11 Walker RW, Dumke KA, Goran MI. Fructose content in popular beverages made with and without high-fructose corn syrup. Nutrition 2014; 30: 928-935
- 12 Ando Y, Ohta Y, Munetsuna E. et al. Laboratory analysis of glucose, fructose, and sucrose contents in Japanese common beverages for the exact assessment of beverage-derived sugar intake. Fujita Méd J 2023; 9: 126-133
- 13 Chapman CL, Johnson BD, Sackett JR. et al. Soft drink consumption during and following exercise in the heat elevates biomarkers of acute kidney injury. Am J Physiol-Regul Integr Comp Physiol 2019; 316: R189-R198
- 14 Andres-Hernando A, Li N, Cicerchi C. et al. Protective role of fructokinase blockade in the pathogenesis of acute kidney injury in mice. Nat Commun 2017; 8: 14181
- 15 García-Arroyo FE, Gonzaga G, Muñoz-Jiménez I. et al. Antioxidant supplements as a novel mean for blocking recurrent heat stress-induced kidney damage following rehydration with fructose-containing beverages. Free Radic Biol Med 2019; 141: 182-191
- 16 Wang S, Pang X, Cai Y. et al. Acute heat stress upregulates Akr1b3 through Nrf-2 to increase endogenous fructose leading to kidney injury. J Biol Chem 2025; 301: 108121
- 17 García-Arroyo FE, Tapia E, Muñoz-Jiménez I. et al. Fluid Intake Restriction Concomitant to Sweetened Beverages Hydration Induce Kidney Damage. Oxidative Med Cell Longev 2020; 2020: 8850266
- 18 Chapman CL, Grigoryan T, Vargas NT. et al. High-fructose corn syrup-sweetened soft drink consumption increases vascular resistance in the kidneys at rest and during sympathetic activation. Am J Physiol-Ren Physiol 2020; 318: F1053-F1065
- 19 Kanbay M, Siriopol D, Copur S. et al. Effect of Coffee Consumption on Renal Outcome: A Systematic Review and Meta-Analysis of Clinical Studies. J Ren Nutr 2021; 31: 5-20
- 20 Hu EA, Selvin E, Grams ME. et al. Coffee Consumption and Incident Kidney Disease: Results From the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis 2018; 72: 214-222
- 21 Jhee JH, Nam KH, An SY. et al. Effects of Coffee Intake on Incident Chronic Kidney Disease: A Community-Based Prospective Cohort Study. Am J Med 2018; 131: 1482-1490.e3
- 22 Kennedy OJ, Pirastu N, Poole R. et al. Coffee Consumption and Kidney Function: A Mendelian Randomization Study. Am J Kidney Dis 2020; 75: 753-761
- 23 Joo YS, Koh H, Nam KH. et al. Alcohol Consumption and Progression of Chronic Kidney Disease: Results From the Korean Cohort Study for Outcome in Patients with Chronic Kidney Disease. Mayo Clin Proc 2020; 95: 293-305
- 24 Yokus B, Maccioni L, Fu L. et al. The Link Between Alcohol Consumption and Kidney Injury. Am J Pathol 2025; S0002–9440(25)00193–2
- 25 Yamamoto R, Li Q, Otsuki N. et al. A Dose-Dependent Association between Alcohol Consumption and Incidence of Proteinuria and Low Glomerular Filtration Rate: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients 2023; 15: 1592
- 26 Park M, Lee SM, Yoon HJ. Association between alcohol intake and measures of incident CKD: An analysis of nationwide health screening data. PLoS One 2019; 14: e0222123
- 27 Yuan HC, Yu QT, Bai H. et al. Alcohol intake and the risk of chronic kidney disease: results from a systematic review and dose–response meta-analysis. Eur J Clin Nutr 2021; 75: 1555-1567
- 28 Li D, Xu J, Liu F. et al. Alcohol Drinking and the Risk of Chronic Kidney Damage: A Meta-Analysis of 15 Prospective Cohort Studies. Alcohol: Clin Exp Res 2019; 43: 1360-1372
- 29 Li Y, Zhu B, Song N. et al. Alcohol consumption and its association with chronic kidney disease: Evidence from a 12-year China health and Nutrition Survey. Nutr Metab Cardiovasc Dis 2022; 32: 1392-1401
- 30 Fukui S, Okada M, Rahman M. et al. Differences in the Association Between Alcoholic Beverage Type and Serum Urate Levels Using Standardized Ethanol Content. JAMA Netw Open 2023; 6: e233398
- 31 Lyu JQ, Miao MY, Wang JM. et al. Consumption of Total and Specific Alcoholic Beverages and Long-Term Risk of Gout Among Men and Women. JAMA Netw Open 2024; 7: e2430700
- 32 Nakamura K, Sakurai M, Miura K. et al. Alcohol intake and the risk of hyperuricaemia: A 6-year prospective study in Japanese men. Nutr Metab Cardiovasc Dis 2012; 22: 989-996
- 33 Wagner S, Godelmann R, Reusch H. et al. Isotonische Getränke – die idealen Durstlöscher für den Sommer?. chrom + food FORUM 2015; 42-44
- 34 Dini E, Abreu JD, López E. [Osmolality of frequently consumed beverages]. Investig Clin 2004; 45: 323-335
- 35 Skarlovnik T, Lamut A, Hostnik G. et al. Osmolality and Tonicity of Isotonic Beverages. Foods 2024; 13: 1483
- 36 Medical News Today. Which drinks contain electrolytes and how to make them at home. Im Internet: Zugriff am 28. August 2025 unter: https://www.medicalnewstoday.com/articles/electrolytes-drinks#how-to-make-at-home
- 37 Merck Manual Professional Edition. Table: Approximate Sodium Content of Common Beverages. Im Internet: Zugriff am 28. August 2025 unter: https://www.merckmanuals.com/professional/multimedia/table/approximate-sodium-content-of-common-beverages
- 38 Sontrop JM, Dixon SN, Garg AX. et al. Association between Water Intake, Chronic Kidney Disease, and Cardiovascular Disease: A Cross-Sectional Analysis of NHANES Data. Am J Nephrol 2013; 37: 434-442
- 39 Clark WF, Sontrop JM, Macnab JJ. et al. Urine Volume and Change in Estimated GFR in a Community-Based Cohort Study. Clin J Am Soc Nephrol 2011; 6: 2634-2641
- 40 Palmer SC, Wong G, Iff S. et al. Fluid intake and all-cause mortality, cardiovascular mortality and kidney function: a population-based longitudinal cohort study. Nephrol Dial Transplant 2014; 29: 1377-1384
- 41 Wagner S, Merkling T, Metzger M. et al. Water intake and progression of chronic kidney disease: the CKD-REIN cohort study. Nephrol Dial Transplant 2021; 37: 730-739
- 42 Clark WF, Sontrop JM, Huang SH. et al. Effect of Coaching to Increase Water Intake on Kidney Function Decline in Adults With Chronic Kidney Disease: The CKD WIT Randomized Clinical Trial. JAMA 2018; 319: 1870-1879
- 43 Bossola M, Mariani I, Strizzi CT. et al. How to Limit Interdialytic Weight Gain in Patients on Maintenance Hemodialysis: State of the Art and Perspectives. J Clin Med 2025; 14: 1846
- 44 Kalantar-Zadeh K, Regidor DL, Kovesdy CP. et al. Fluid Retention Is Associated With Cardiovascular Mortality in Patients Undergoing Long-Term Hemodialysis. Circulation 2009; 119: 671-679
- 45 Foundation NK, Daugirdas JT, Depner TA. et al. KDOQI Clinical Practice Guideline for Hemodialysis Adequacy: 2015 Update. Am J Kidney Dis 2015; 66: 884-930
- 46 Bossola M, Calvani R, Marzetti E. et al. Thirst in patients on chronic hemodialysis: What do we know so far. Int Urol Nephrol 2020; 52: 697-711
- 47 Weiner DE, Brunelli SM, Hunt A. et al. Improving Clinical Outcomes Among Hemodialysis Patients: A Proposal for a “Volume First” Approach From the Chief Medical Officers of US Dialysis Providers. Am J Kidney Dis 2014; 64: 685-695
- 48 Borrelli S, Provenzano M, Gagliardi I. et al. Sodium Intake and Chronic Kidney Disease. Int J Mol Sci 2020; 21: 4744
- 49 Tomson CRV. Advising dialysis patients to restrict fluid intake without restricting sodium intake is not based on evidence and is a waste of time. Nephrol Dial Transplant 2001; 16: 1538-1542
- 50 Ok E. How to Successfully Achieve Salt Restriction in Dialysis Patients? What Are the Outcomes. Blood Purif 2010; 29: 102-104
- 51 Marfella R, Prattichizzo F, Sardu C. et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N Engl J Med 2024; 390: 900-910
- 52 Zuri G, Karanasiou A, Lacorte S. Microplastics: Human exposure assessment through air, water, and food. Environ Int 2023; 179: 108150
- 53 Bocker R, Silva EK. Microplastics in our diet: A growing concern for human health. Sci Total Environ 2025; 968: 178882
- 54 Danopoulos E, Twiddy M, Rotchell JM. Microplastic contamination of drinking water: A systematic review. PLoS One 2020; 15: e0236838
- 55 Li H, Zhu L, Ma M. et al. Occurrence of microplastics in commercially sold bottled water. Sci Total Environ 2023; 867: 161553
- 56 Gambino I, Bagordo F, Grassi T. et al. Occurrence of Microplastics in Tap and Bottled Water: Current Knowledge. Int J Environ Res Public Heal 2022; 19: 5283
- 57 Sajedi S, An C, Chen Z. Unveiling the hidden chronic health risks of nano- and microplastics in single-use plastic water bottles: A review. J Hazard Mater 2025; 495: 138948
- 58 Râpă M, Darie-Nită RN, Matei E. et al. Insights into Anthropogenic Micro- and Nanoplastic Accumulation in Drinking Water Sources and Their Potential Effects on Human Health. Polymers 2023; 15: 2425
- 59 Sun T, Teng Y, Ji C. et al. Global prevalence of microplastics in tap water systems: Abundance, characteristics, drivers and knowledge gaps. Sci Total Environ 2024; 929: 172662
- 60 Chaïb I, Doyen P, Merveillie P. et al. Microplastic contaminations in a set of beverages sold in France. J Food Compos Anal 2025; 144: 107719
- 61 Oliveira RB de, Pelepenko LE, Masaro DA. et al. Effects of microplastics on the kidneys: a narrative review. Kidney Int 2024; 106: 400-407
