RSS-Feed abonnieren
DOI: 10.1055/a-2606-7079
Zuckerersatzstoffe – sichere Alternativen oder mögliche Risikoträger?
Low-Energy Sugar Replacements – Safe Alternatives or Potentially Risky?
Zusammenfassung
Hoher Zuckerkonsum trägt nicht nur zur Karies, sondern über metabolische Folgen wie
Adipositas und Typ-2-Diabetes auch zum kardiovaskulären Risiko bei. Alternative Zucker
und Zuckerersatzstoffe wie Süßstoffe und Zuckeraustauschstoffe sollen diese Risiken
reduzieren. Unter den Zuckervarianten ist bislang kein wirklich gesunder Kandidat
ermittelbar. Süßstoffe sind heterogene, intensiv süß schmeckende Substanzen, die vor
allem in kalorienreduzierten Getränken verwendet werden. Zuckeraustauschstoffe – also
Zuckeralkohole – sind etwa halb bis ebenso süß wie normaler Zucker und stecken überwiegend
in festen Lebensmitteln.
Epidemiologisch ist der Verzehr von Zucker, aber auch von Zuckerersatzstoffen, mit
Adipositas, Typ-2-Diabetes, kardiovaskulären Erkrankungen und Krebs assoziiert. Diese
Beobachtungsdaten sind jedoch durch starke Confounder (andere Lebensstilfaktoren)
und „Reverse Causality“ massiv verzerrt.
In methodisch gut kontrollierten (verblindeten) Studien (RCT)
bewirken Süßstoffe und Zuckeraustauschstoffe gegenüber Zucker eine signifikante Reduktion
von anthropometrischen und einigen glykämischen Markern, gegenüber Wasser gibt es
keinen Vorteil. Tauscht man Zucker durch Zuckerersatz aus, so ist der Gewichtsverlust
geringer, als anhand der Kalorienersparnis zu erwarten ist. Süßstoffe und Zuckeraustauschstoffe
bieten noch offene Forschungsfragen zu Verhaltenseffekten, Veränderungen des Darmmikrobioms
oder der hormonellen Stoffwechselregulation und zu möglichen rheologischen Phänomenen.
Was ist wichtig
Unter allen Süßungsmitteln sind die verschiedenen, haushaltsüblichen Zucker eindeutig
die schlechtere Wahl. Süßstoffe und Zuckeraustauschstoffe sind durch methodisch unzureichende
Beobachtungsstudien stark in Verruf geraten, schneiden aber in randomisiert-kontrollierten
Studien besser ab als Zucker. Gerade mechanistische Fragen zu Stoffwechsel und Hormonsystem,
Darmmikrobiom und Gerinnungskaskaden müssen
endlich in naher Zukunft durch hochwertige Testreihen geklärt werden.
Abstract
High sugar intake contributes to tooth decay, but also (via metabolic sequelae such
as obesity and type 2 diabetes) to cardiovascular risk. Alternative sugars, sweeteners
and sugar alcohols are used in order to reduce these risks. Among widely investigated
non-sucrose sugars, up to now no clearly recommendable candidate has arisen. Sweeteners
are chemically, taste-wise and biologically heterogeneous compounds with intensive
sweetness, usually found in low-calorie beverages. Sugar alcohols are half as or just
as sweet as sugar; they are often used in solid food stuffs.
In epidemiological studies, the intake of non-caloric sweeteners and sugar alcohols
is consistently associated with obesity, type 2 diabetes, cardiovascular disease and
cancer. Strong confounders (unhealthy lifestyle in every aspect) or “reverse causality”
reduce the level of evidence from these kinds of studies.
In blinded randomised-controlled trials (RCT), sugar alternatives lead to a significant
reduction of anthropometric outcomes and some glycemic parameters. When compared to
water, sugar replacements provide no relevant benefit. When replacing sugar with low-calorie
alternatives, weight loss effect is way smaller than expected on the basis of reduced
energy intake. Sweeteners and sugar alcohols require further research with respect
to behavioral effects, changes in the gut microbiome, the hormonal metabolic regulation
and rheologic phenomena.
What is important
Among all kinds of sweetening agents, the variety of conventional sugars is clearly
the worst option. Sugar replacements such as sweeteners and sugar alcohols were deemed
dangerous on the basis of methodologically limited observational studies. However,
in randomised controlled trials their cardiometabolic impact is better compared to
sugars. Mechanistic questions regarding metabolism and hormone system, gut microbiom
and coagulation need to be answered finally and quickly with
high-quality clinical trials.
-
Zucker ist gesundheitlich problematisch, u. a. bei Adipositas, Typ-2-Diabetes und Herz-Kreislauf-Erkrankungen, Zuckerersatzstoffe (Süßstoffe und Zuckeralkohole) bieten theoretisch Vorteile, etwa weniger Kalorien und keine kariogene Wirkung.
-
Beobachtungsstudien zeigen teils starke Risikoassoziationen (z. B. zu Adipositas oder Krebs), sind aber methodisch unzureichend (z. B. Confounding, Reverse Causality).
-
Randomisierte Studien (RCT) deuten auf moderate Vorteile bei Gewicht und Stoffwechsel hin, allerdings mit kleiner Effektstärke.
-
Mechanistische Studien liefern Hinweise auf Wirkungen auf Inkretine, Appetitregulation und Mikrobiom – Dignität und klinische Relevanz aber noch unklar.
-
Der Einsatz von Zuckerersatzstoffen ist weder pauschal zu befürworten noch zu verdammen – es fehlt an unabhängiger, hochwertiger Forschung, insbesondere zu Langzeitwirkungen.
Publikationsverlauf
Artikel online veröffentlicht:
06. August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Hancock S, Zinn C, Schofield G. The consumption of processed sugar- and starch-containing foods, and dental caries: a systematic review. Eur J Oral Sci 2020; 128: 467-475
- 2 Santos LP, Gigante DP, Delpino FM. et al. Sugar sweetened beverages intake and risk of obesity and cardiometabolic diseases in longitudinal studies: A systematic review and meta-analysis with 1.5 million individuals. Clin Nutr ESPEN 2022; 51: 128-142
- 3 Neelakantan N, Park SH, Chen GC. et al. Sugar-sweetened beverage consumption, weight gain, and risk of type 2 diabetes and cardiovascular diseases in Asia: a systematic review. Nutr Rev 2021; 80: 50-67
- 4 Xi B, Huang Y, Reilly KH. et al. Sugar-sweetened beverages and risk of hypertension and CVD: a dose-response meta-analysis. Br J Nutr 2015; 113: 709-717
- 5 Jatho A, Myung SK, Kim J. et al. Consumption of Sugar-Sweetened Soft Drinks and Risk of Gastrointestinal Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Oncology 2024; 102: 141-156
- 6 Schwingshackl L, Neuenschwander M, Hoffmann G. et al. Dietary sugars and cardiometabolic risk factors: a network meta-analysis on isocaloric substitution interventions. Am J Clin Nutr 2020; 111: 187-196
- 7 WHO. Guideline: sugars intake for adults and children. Zugriff am 09. Juli 2025 unter: https://www.who.int/publications/i/item/9789241549028
- 8 Todoric J, Di Caro G, Reibe S. et al. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat Metab 2020; 2: 1034-1045
- 9 Lee D, Chiavaroli L, Ayoub-Charette S. et al. Important Food Sources of Fructose-Containing Sugars and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Controlled Trials. Nutrients 2022; 14: 2846
- 10 Zhao Y, Feng Y, Zeng Y. et al. Sugar intake and risk of hypertension: a systematic review and dose-response meta-analysis of cohort and cross-sectional studies. Crit Rev Food Sci Nutr 2024; 64: 9483-9494
- 11 Siddiqui SH, Rossi NF. Acute Intake of Fructose Increases Arterial Pressure in Humans: A Meta-Analysis and Systematic Review. Nutrients 2024; 16: 219
- 12 Chi X, Cen Y, Yang B. et al. Effects of dietary factors on hyperuricaemia and gout: a systematic review and meta-analysis of observational studies. Int J Food Sci Nutr 2024; 75: 753-773
- 13 Wang DD, Sievenpiper JL, de Souza RJ. et al. The effects of fructose intake on serum uric acid vary among controlled dietary trials. J Nutr 2012; 142: 916-923
- 14 Kuhre RE, Gribble FM, Hartmann B. et al. Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans. Am J Physiol Gastrointest Liver Physiol 2014; 306: G622-G630
- 15 Mooradian AD, Smith M, Tokuda M. The role of artificial and natural sweeteners in reducing the consumption of table sugar: A narrative review. Clin Nutr ESPEN 2017; 18: 1-8
- 16 Kim SH, Dubois GE. Natural high potency sweeteners. In: Marie S, Piggott JR. , Hrsg. Handbook of Sweeteners. Berlin: Springer; 1991
- 17 Hoppe K. The psychophysics of sweet taste. 7. New determination of sweet taste parameters of acesulfame, aspartame, cyclamate, saccharin, glucose and sorbitol. Nahrung 1995; 39: 275-281
- 18 Cardello HM, Da Silva MA, Damasio MH. Measurement of the relative sweetness of stevia extract, aspartame and cyclamate/saccharin blend as compared to sucrose at different concentrations. Plant Foods Hum Nutr 1999; 54: 119-130
- 19 Winther R, Aasbrenn M, Farup PG. Intake of non-nutritive sweeteners is associated with an unhealthy lifestyle: a cross-sectional study in subjects with morbid obesity. BMC Obes 2017; 4: 41
- 20 Manavalan D, Shubrook C, Young CF. Consumption of Non-nutritive Sweeteners and Risk for Type 2 Diabetes: What Do We Know, and Not?. Curr Diab Rep 2021; 21: 53
- 21 Naomi ND, Ngo J, Brouwer-Brolsma E. et al. Sugar-sweetened beverages, low/no-calorie beverages, fruit juice and non-alcoholic fatty liver disease defined by fatty liver index: the SWEET project. Nutr Diabetes 2023; 13: 6
- 22 Pereira MA. Diet beverages and the risk of obesity, diabetes, and cardiovascular disease: a review of the evidence. Nutr Rev 2013; 71: 433-440
- 23 Palomar-Cros A, Straif K, Romaguera D. et al. Consumption of aspartame and other artificial sweeteners and risk of cancer in the Spanish multicase-control study (MCC-Spain). Int J Cancer 2023; 153: 979-993
- 24 Chia CW, Shardell M, Tanaka T. et al. Chronic Low-Calorie Sweetener Use and Risk of Abdominal Obesity among Older Adults: A Cohort Study. PLoS One 2016; 11: e0167241
- 25 Debras C, Deschasaux-Tanguy M, Chazelas E. et al. Artificial Sweeteners and Risk of Type 2 Diabetes in the Prospective NutriNet-Santé Cohort. Diabetes Care 2023; 46: 1681-1690
- 26 Debras C, Chazelas E, Sellem L. et al. Artificial sweeteners and risk of cardiovascular diseases: results from the prospective NutriNet-Santé cohort. BMJ 2022; 378: e071204
- 27 Debras C, Chazelas E, Srour B. et al. Artificial sweeteners and cancer risk: Results from the NutriNet-Santé population-based cohort study. PLoS Med 2022; 19: e1003950
- 28 Mayer-Davis E, Leidy H, Mattes R. et al. Beverage Consumption and Growth, Size, Body Composition, and Risk of Overweight and Obesity: A Systematic Review [Internet]. Alexandria (VA): USDA Nutrition Evidence Systematic Review; 2020. Zugriff am 07. Juni 2025 unter: https://pubmed.ncbi.nlm.nih.gov/35349233/
- 29 Zhu C, Ji D, Ma J. et al. Association between artificial sweeteners-aspartame consumption and colorectal cancer risk: evidence-based strategies. Oncology 2024; 102: 533-543
- 30 Witkowski M, Nemet I, Alamri H. et al. The artificial sweetener erythritol and cardiovascular event risk. Nat Med 2023; 29: 710-718
- 31 Lim J, Hong HG, Huang J. et al. Serum Erythritol and Risk of Overall and Cause-Specific Mortality in a Cohort of Men. Nutrients 2024; 16: 3099
- 32 Heianza Y, Sun Q, Wang X. et al. Plasma levels of polyols erythritol, mannitol, and sorbitol and incident coronary heart disease among women. Eur J Prev Cardiol 2025; 32: 404-414
- 33 Imamura F, O’Connor L, Ye Z. et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. Br J Sports Med 2016; 50: 496-504
- 34 WHO. Summary of findings of the evaluation of aspartame at the International Agency for Research on Cancer (IARC) Monographs Programme’s 134th Meeting, and the Joint FAO/WHO Expert Committee on Food Additives (JECFA) 96th meeting. Zugriff am 07. Juni 2025 unter: https://www.who.int/publications/m/item/summary-of-findings-of-the-evaluation-of-aspartame-at-the-international-agency-for-research-on-cancer-(iarc)-monographs-programme-s-134th-meeting--and-the-joint-fao-who-expert-committee-on-food-additives-(jecfa)-96th-meeting
- 35 Maimaitiyiming M, Yang H, Zhou L. et al. Associations between an obesity-related dietary pattern and incidence of overall and site-specific cancers: a prospective cohort study. BMC Med 2023; 21: 251
- 36 Drewnowski A, Rehm CD. The use of low-calorie sweeteners is associated with self-reported prior intent to lose weight in a representative sample of US adults. Nutr Diabetes 2016; 6: e202
- 37 Laviada-Molina H, Molina-Segui F, Pérez-Gaxiola G. et al. Effects of nonnutritive sweeteners on body weight and BMI in diverse clinical contexts: Systematic review and meta-analysis. Obes Rev 2020; 21: e13020
- 38 Espinosa A, Mendoza K, Laviada-Molina H. et al. Effects of non-nutritive sweeteners on the BMI of children and adolescents: a systematic review and meta-analysis of randomised controlled trials and prospective cohort studies. Lancet Glob Health 2023; 11 (Suppl. 1) S8
- 39 McGlynn ND, Khan TA, Wang L. et al. Association of Low- and No-Calorie Sweetened Beverages as a Replacement for Sugar-Sweetened Beverages With Body Weight and Cardiometabolic Risk: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5: e222092
- 40 Peters JC, Beck J, Cardel M. et al. The effects of water and non-nutritive sweetened beverages on weight loss and weight maintenance: A randomized clinical trial. Obesity (Silver Spring) 2016; 24: 297-304
- 41 Golzan SA, Movahedian M, Haghighat N. et al. Association between non-nutritive sweetener consumption and liver enzyme levels in adults: a systematic review and meta-analysis of randomized clinical trials. Nutr Rev 2023; 81: 1105-1117
- 42 Movahedian M, Golzan SA, Ashtary-Larky D. et al. The effects of artificial- and stevia-based sweeteners on lipid profile in adults: a GRADE-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials. Crit Rev Food Sci Nutr 2023; 63: 5063-5079
- 43 Zhang R, Noronha JC, Khan TA. et al. The Effect of Non-Nutritive Sweetened Beverages on Postprandial Glycemic and Endocrine Responses: A Systematic Review and Network Meta-Analysis. Nutrients 2023; 15: 1050
- 44 Greyling A, Appleton KM, Raben A. et al. Acute glycemic and insulinemic effects of low-energy sweeteners: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2020; 112: 1002-1014
- 45 World Health Organization. Health effects of the use of non-sugar sweeteners: a systematic review and meta-analysis. 2022 Zugriff am 07. Juni 2025 unter: https://www.who.int/publications/i/item/9789240046429
- 46 Khan TA, Lee JJ, Ayoub-Charette S. et al. WHO guideline on the use of non-sugar sweeteners: a need for reconsideration. Eur J Clin Nutr 2023; 77: 1009-1013
- 47 Meyer-Gerspach AC, Wölnerhanssen B, Beglinger C. Functional roles of low calorie sweeteners on gut function. Physiol Behav 2016; 164: 479-481
- 48 Kemper M, Kabisch S, Meyerhof W. et al. Der Einfluss intestinaler Süßrezeptoren auf die glukoseabhängige Inkretinfreisetzung – eine Humanstudie des SEGATROM-Projekts* *(Sensorische und gastrointestinale Einflüsse von Geschmacksrezeptorvarianten auf den Metabolismus und die Ernährung des Menschen). Diabetol Stoffwechs 2015; 10: P120
- 49 Kabisch S, Kemper M, Meyerhof W. et al. Study on Immediate and Long-term Effects on Incretin Release Induced by Artificial Sweeteners (ILIAS). Results and Outlook from the SEGATROM Study, IFADRC, Barcelona.
- 50 Dalenberg JR, Patel BP, Denis R. et al. Short-Term Consumption of Sucralose with, but Not without, Carbohydrate Impairs Neural and Metabolic Sensitivity to Sugar in Humans. Cell Metab 2020; 31: 493-502.e7
- 51 Van Opstal AM, Hafkemeijer A, van den Berg-Huysmans AA. et al. Brain activity and connectivity changes in response to nutritive natural sugars, non-nutritive natural sugar replacements and artificial sweeteners. Nutr Neurosci 2021; 24: 395-405
- 52 Meyer-Gerspach AC, Wingrove JO, Beglinger C. et al. Erythritol and xylitol differentially impact brain networks involved in appetite regulation in healthy volunteers. Nutr Neurosci 2022; 25: 2344-2358
- 53 Teysseire F, Bordier V, Budzinska A. et al. The Role of D-allulose and Erythritol on the Activity of the Gut Sweet Taste Receptor and Gastrointestinal Satiation Hormone Release in Humans: A Randomized, Controlled Trial. J Nutr 2022; 152: 1228-1238
- 54 Wölnerhanssen BK, Drewe J, Verbeure W. et al. Gastric emptying of solutions containing the natural sweetener erythritol and effects on gut hormone secretion in humans: A pilot dose-ranging study. Diabetes Obes Metab 2021; 23: 1311-1321
- 55 Meyer-Gerspach AC, Drewe J, Verbeure W. et al. Effect of the Natural Sweetener Xylitol on Gut Hormone Secretion and Gastric Emptying in Humans: A Pilot Dose-Ranging Study. Nutrients 2021; 13: 174
- 56 Overduin J, Collet TH, Medic N. et al. Failure of sucrose replacement with the non-nutritive sweetener erythritol to alter GLP-1 or PYY release or test meal size in lean or obese people. Appetite 2016; 107: 596-603
- 57 Lee HY, Jack M, Poon T. et al. Effects of Unsweetened Preloads and Preloads Sweetened with Caloric or Low-/No-Calorie Sweeteners on Subsequent Energy Intakes: A Systematic Review and Meta-Analysis of Controlled Human Intervention Studies. Adv Nutr 2021; 12: 1481-1499
- 58 Mehat K, Chen Y, Corpe CP. The Combined Effects of Aspartame and Acesulfame-K Blends on Appetite: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Adv Nutr 2022; 13: 2329-2340
- 59 Farr OM. Acute diet soda consumption alters brain responses to food cues in humans: A randomized, controlled, cross-over pilot study. Nutr Health 2021; 27: 295-299
- 60 Stamataki NS, Mckie S, Scott C. et al. Mapping the Homeostatic and Hedonic Brain Responses to Stevia Compared to Caloric Sweeteners and Water: A Double-Blind Randomised Controlled Crossover Trial in Healthy Adults. Nutrients 2022; 14: 4172
- 61 Yeung AWK, Wong NSM. How Does Our Brain Process Sugars and Non-Nutritive Sweeteners Differently: A Systematic Review on Functional Magnetic Resonance Imaging Studies. Nutrients 2020; 12: 3010
- 62 Yunker AG, Alves JM, Luo S. et al. Obesity and Sex-Related Associations With Differential Effects of Sucralose vs Sucrose on Appetite and Reward Processing: A Randomized Crossover Trial. JAMA Netw Open 2021; 4: e2126313
- 63 Suez J, Korem T, Zeevi D. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014; 514: 181-186
- 64 Suez J, Cohen Y, Valdés-Mas R. et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 2022; 185: 3307-3328.e19
- 65 Tsan L, Chometton S, Hayes AM. et al. Early-life low-calorie sweetener consumption disrupts glucose regulation, sugar-motivated behavior, and memory function in rats. JCI Insight 2022; 7: e157714
- 66 Murali A, Giri V, Cameron HJ. et al. Investigating the gut microbiome and metabolome following treatment with artificial sweeteners acesulfame potassium and saccharin in young adult Wistar rats. Food Chem Toxicol 2022; 165: 113123
- 67 Ahmad SY, Friel J, Mackay D. The Effects of Non-Nutritive Artificial Sweeteners, Aspartame and Sucralose, on the Gut Microbiome in Healthy Adults: Secondary Outcomes of a Randomized Double-Blinded Crossover Clinical Trial. Nutrients 2020; 12: 3408
- 68 Serrano J, Smith KR, Crouch AL. et al. High-dose saccharin supplementation does not induce gut microbiota changes or glucose intolerance in healthy humans and mice. Microbiome 2021; 9: 11
- 69 Muilwijk M, Beulens JWJ, Groeneveld L. et al. The entero-endocrine response following a mixed-meal tolerance test with a non-nutritive pre-load in participants with pre-diabetes and type 2 diabetes: A crossover randomized controlled trial proof of concept study. PLoS One 2023; 18: e0290261
- 70 Conz A, Salmona M, Diomede L. Effect of Non-Nutritive Sweeteners on the Gut Microbiota. Nutrients 2023; 15: 1869
- 71 Bellanco A, Celcar Š, Martínez-Cuesta MC. et al. The food additive xylitol enhances the butyrate formation by the child gut microbiota developed in a dynamic colonic simulator. Food Chem Toxicol 2024; 187: 114605
- 72 Xiang S, Ye K, Li M. et al. Xylitol enhances synthesis of propionate in the colon via cross-feeding of gut microbiota. Microbiome 2021; 9: 62
- 73 Finney M, Smullen J, Foster HA. et al. Effects of low doses of lactitol on faecal microflora, pH, short chain fatty acids and gastrointestinal symptomology. Eur J Nutr 2007; 46: 307-314
- 74 Gostner A, Blaut M, Schäffer V. et al. Effect of isomalt consumption on faecal microflora and colonic metabolism in healthy volunteers. Br J Nutr 2006; 95: 40-50
- 75 Beards E, Tuohy K, Gibson G. A human volunteer study to assess the impact of confectionery sweeteners on the gut microbiota composition. Br J Nutr 2010; 104: 701-708
- 76 Mahalak KK, Firrman J, Tomasula PM. et al. Impact of Steviol Glycosides and Erythritol on the Human and Cebus apella Gut Microbiome. J Agric Food Chem 2020; 68: 13093-13101
- 77 Witkowski M, Nemet I, Alamri H. et al. The artificial sweetener erythritol and cardiovascular event risk. Nat Med 2023; 29: 710-718
- 78 Witkowski M, Nemet I, Li XS. et al. Xylitol is prothrombotic and associated with cardiovascular risk. Eur Heart J 2024; 45: 2439-2452
- 79 Mazi TA, Stanhope KL. Elevated Erythritol: A Marker of Metabolic Dysregulation or Contributor to the Pathogenesis of Cardiometabolic Disease?. Nutrients 2023; 15: 4011
- 80 Witkowski M, Wilcox J, Province V. et al. Ingestion of the Non-Nutritive Sweetener Erythritol, but Not Glucose, Enhances Platelet Reactivity and Thrombosis Potential in Healthy Volunteers-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44: 2136-2141
- 81 Kestin AS, Ellis PA, Barnard MR. et al. Effect of strenuous exercise on platelet activation state and reactivity. Circulation 1993; 88: 1502-1511
- 82 Razmara M, Hjemdahl P, Yngen M. et al. Food intake enhances thromboxane receptor-mediated platelet activation in type 2 diabetic patients but not in healthy subjects. Diabetes Care 2007; 30: 138-140
- 83 McEwen BJ. The influence of diet and nutrients on platelet function. Semin Thromb Hemost 2014; 40: 214-226
- 84 CDC. National Health and Nutrition Examination Survey (NHANES): 2013–2014 Examination Data – Continuous NHANES. 2015 Zugriff am 07. Juni 2025 unter: https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Examination&CycleBeginYear=2013