RSS-Feed abonnieren

DOI: 10.1055/a-2603-4217
Synthetic Methods for the Construction of 1,2-Azaborole-Containing Polycyclic Aromatic Hydrocarbons

Abstract
Boron-doped polycyclic aromatic hydrocarbons have emerged as a prominent class of compounds due to the unique properties that can be achieved through the incorporation of boron, often paired with another heteroatom, a combination that makes them attractive for a range of applications. The benefit of doping with these heteroatoms is also evident in 1,2-azaboroles, a subclass of B-containing compounds, consisting of five-membered unsaturated heterocycles with dative boron–nitrogen bonds. The donation of electron density from nitrogen to boron renders the molecules electronically saturated and endows them with the stability that is a prerequisite for their application in organic electronics, photovoltaics, or bioimaging. The development of these compounds, first described in the 1960s, has been particularly intensive over the past two decades, driven by their photoresponsive and luminescent properties. This review aims to provide a comprehensive overview of the synthetic methodologies employed in the construction of 1,2-azaboroles. In addition to classical approaches, such as nitrogen-directed electrophilic C – H borylation or lithiation–transmetalation of prefunctionalized substrates, we discuss less commonly used methods and protocols that are limited to specific starting materials, thus demonstrating a large available repertoire of synthetic tools to access these compounds.
1 Introduction
2 Synthetic Approaches
2.1 Lithiation-Transmetalation
2.2 Electrophilic C–H Borylation
2.3 Transition Metal-Catalyzed C–H Borylation
2.4 Cycloaddition
2.5 Photoisomerization
2.6 Hydroboration
2.7 Coordination-Cyclization
2.8 Nucleophilic Aromatic Substitution
2.9 Silicon–Boron Exchange
3 Conclusion and Outlook
Key words
azaboroles - borylation - cycloaddition - electrophilic borylation - PAHs - transmetalation# These authors contributed equally to this work.
Publikationsverlauf
Eingereicht: 05. April 2025
Angenommen: 05. Mai 2025
Accepted Manuscript online:
08. Mai 2025
Artikel online veröffentlicht:
09. Juli 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Sun W, Guo J, Fan Z, Yuan L, Ye K, Dou C, Wang Y. Angew. Chem. Int. Ed. 2022; 61: e202209271
- 1b Yin X, Liu J, Jäkle F. Chem. Eur. J. 2021; 27: 2973
- 1c von Grotthuss E, John A, Kaese T, Wagner M. Asian J. Org. Chem. 2018; 7: 37
- 1d Entwistle CD, Marder TB. Chem. Mater. 2004; 16: 4574
- 1e Helten H. Chem. Eur. J. 2016; 22: 12972
- 1f Kothavale SS, Lee JY. Adv. Opt. Mater. 2020; 8: 2000922
- 1g Liu M, Li C, Liao G, Zhao F, Yao C, Wang N, Yin X. Chem. Eur. J. 2024; 30: e202402257
- 1h Mamada M, Hayakawa M, Ochi J, Hatakeyama T. Chem. Soc. Rev. 2024; 53: 1624
- 2a Mellerup SK, Wang S. Chem. Soc. Rev. 2019; 48: 3537
- 2b Shimoyama D, Jäkle F. Aggregate 2022; 3: e149
- 2c Ibarra-Rodríguez M, Muñoz-Flores BM, Chan-Navarro R, Waksman N, Saucedo-Yañez A, Sánchez M, Jiménez-Pérez VM. Opt. Mater. 2019; 89: 123
- 2d Ibarra-Rodríguez M, Muñoz-Flores BM, Jiménez-Pérez VM. J. Lumin. 2018; 198: 342
- 2e Maeda C, Michishita S, Yasutomo I, Ema T. Angew. Chem. Int. Ed. 2025; 64: e202418546
- 3 Coghi PS, Zhu Y, Xie H, Hosmane NS, Zhang Y. Molecules 2021; 26: 3309
- 4 Hu D, Huang R, Fang Y. Precis. Chem. 2025; 3: 10
- 5a Ji L, Griesbeck S, Marder TB. Chem. Sci. 2017; 8: 846
- 5b Helten H. Chem. Asian. J. 2019; 14: 919
- 5c Hudson ZM, Wang S. Acc. Chem. Res. 2009; 42: 1584
- 5d Wade CR, Broomsgrove AEJ, Aldridge S, Gabbaï FP. Chem. Rev. 2010; 110: 3958
- 5e Guo Z, Shin I, Yoon J. Chem. Commun. 2012; 48: 5956
- 5f Bull SD, Davidson MG, van den Elsen JMH, Fossey JS, Jenkins ATA, Jiang Y-B, Kubo Y, Marken F, Sakurai K, Zhao J, James TD. Acc. Chem. Res. 2013; 46: 312
- 6a Li D, Zhang H, Wang Y. Chem. Soc. Rev. 2013; 42: 8416
- 6b Huang J, Wang X, Xiang Y, Guo L, Chen G. Adv. Energy Sustainability Res. 2021; 2: 2100016
- 6c Rao Y-L, Wang S. Inorg. Chem. 2011; 50: 12263
- 6d Zhang X, Rauch F, Niedens J, da Silva RB, Friedrich A, Nowak-Król A, Garden SJ, Marder TB. J. Am. Chem. Soc. 2022; 144: 22316
- 7a Liu Z, Marder TB. Angew. Chem. Int. Ed. 2008; 47: 242
- 7b Bosdet MJD, Piers WE. Can. J. Chem. 2009; 87: 8
- 7c Ishibashi JSA, Dargelos A, Darrigan C, Chrostowska A, Liu S-Y. Organometallics 2017; 36: 2494
- 7d Murphy CJ, Baggett AW, Miller DP, Simpson S, Marcinkowski MD, Mattera MFG, Pronschinske A, Therrien A, Liriano ML, Zurek E, Liu S-Y, Sykes ECH. J. Phys. Chem. C 2015; 119: 14624
- 7e Yuan K, Volland D, Kirschner S, Uzelac M, Nichol GS, Nowak-Król A, Ingleson MJ. Chem. Sci. 2022; 13: 1136
- 8a McConnell CR, Haeffner F, Baggett AW, Liu S-Y. J. Am. Chem. Soc. 2019; 141: 9072
- 8b Giustra ZX, Liu S-Y. J. Am. Chem. Soc. 2018; 140: 1184
- 8c Campbell PG, Marwitz AJV, Liu S-Y. Angew. Chem. Int. Ed. 2012; 51: 6074
- 9 Schepper JDW, Orthaber A, Pammer F. J. Org. Chem. 2021; 86: 14767
- 10 Full F, Wölflick Q, Radacki K, Braunschweig H, Nowak-Król A. Chem. Eur. J. 2022; 28: e202202280
- 11 Hecht R, Kade J, Schmidt D, Nowak-Król A. Chem. Eur. J. 2017; 23: 11620
- 12 Wang J, Jin B, Wang N, Peng T, Li X, Luo Y, Wang S. Macromolecules 2017; 50: 4629
- 13a Li D, Zhang Z, Zhao S, Wang Y, Zhang H. Dalton. Trans. 2011; 40: 1279
- 13b Yusuf M, Liu K, Guo F, Lalancette RA, Jäkle F. Dalton. Trans. 2016; 45: 4580
- 14 Nowak-Król A, Geppert PT, Naveen KR. Chem. Sci. 2024; 15: 7408
- 15 Yoshigoe Y, Hashizume K, Saito S. Dalton Trans. 2022; 51: 17035
- 16a Fung TH-C, Wong C-L, Tang W-K, Leung M-Y, Low K-H, Yam VW-W. Chem. Commun. 2022; 58: 4231
- 16b Mellerup SK, Yuan K, Nguyen C, Lu Z-H, Wang S. Chem. Eur. J. 2016; 22: 12464
- 17 Zhao R, Dou C, Xie Z, Liu J, Wang L. Angew. Chem. Int. Ed. 2016; 55: 5313
- 18 Wakamiya A, Taniguchi T, Yamaguchi S. Angew. Chem. Int. Ed. 2006; 45: 3170
- 19a Shiu Y-J, Cheng Y-C, Tsai W-L, Wu C-C, Chao C-T, Lu C-W, Chi Y, Chen Y-T, Liu S-H, Chou P-T. Angew. Chem. Int. Ed. 2016; 55: 3017
- 19b Full J, Wildervanck MJ, Dillmann C, Panchal SP, Volland D, Full F, Meerholz K, Nowak-Król A. Chem. Eur. J. 2023; 29: e202302808
- 19c Shiu Y-J, Chen Y-T, Lee W-K, Wu C-C, Lin T-C, Liu S-H, Chou P-T, Lu C-W, Cheng IC, Lien Y-J, Chi Y. J. Mater. Chem. C 2017; 5: 1452
- 20a Zawada Z, Guo Z, Oliveira BL, Navo CD, Li H, Cal PMS. D, Corzana F, Jiménez-Osés G, Bernardes GJL. Bioconjugate Chem. 2021; 32: 1812
- 20b Lu H, Nakamuro T, Yamashita K, Yanagisawa H, Nureki O, Kikkawa M, Gao H, Tian J, Shang R, Nakamura E. J. Am. Chem. Soc. 2020; 142: 18990
- 20c Shi J, Ran Z, Peng F. Dyes Pigments 2022; 204: 110383
- 20d Pais VF, Alcaide MM, López-Rodríguez R, Collado D, Nájera F, Pérez-Inestrosa E, Álvarez E, Lassaletta JM, Fernández R, Ros A, Pischel U. Chem. Eur. J. 2015; 21: 15369
- 20e Xu J-F, Gu J, Qi Y-L, Zhang M, Chen J, Li D-D, Yang Y-S, Lv P-C, Zhu H-L. Dyes Pigments 2021; 186: 108974
- 21a Mierzwa G, Gordon AJ, Berski S. J. Mol. Model. 2020; 26: 136
- 21b Berski S, Latajka Z, Gordon AJ. New J. Chem. 2011; 35: 89
- 21c Jonas V, Frenking G. J. Chem. Soc., Chem. Commun. 1994; 1489
- 22 Hermanek S. Chem. Rev. 1992; 92: 325
- 23a Rao Y-L, Amarne H, Zhao S-B, McCormick TM, Martić S, Sun Y, Wang R-Y, Wang S. J. Am. Chem. Soc. 2008; 130: 12898
- 23b Rao Y-L, Kusamoto T, Sakamoto R, Nishihara H, Wang S. Organometallics 2014; 33: 1787
- 23c Amarne H, Baik C, Murphy SK, Wang S. Chem. Eur. J. 2010; 16: 4750
- 24a Yoshino J, Kano N, Kawashima T. J. Org. Chem. 2009; 74: 7496
- 24b Yuan K, Yousefalizadeh G, Saraci F, Peng T, Kozin I, Stamplecoskie KG, Wang S. Inorg. Chem. 2018; 57: 14698
- 24c Mellerup SK, Hafele L, Lorbach A, Wang X, Wang S. Org. Lett. 2017; 19: 3851
- 25a Yuan Y, Liang Y, Shi S, Liang YF, Jiao N. Chin. J. Chem. 2020; 38: 1245
- 25b Kalyani D, Dick AR, Anani WQ, Sanford MS. Org. Lett. 2006; 8: 2523
- 25c Song B, Zheng X, Mo J, Xu B. Adv. Synth. Catal. 2010; 352: 329
- 25d Dudnik AS, Chernyak N, Huang C, Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 8729
- 26 Wildervanck MJ, Hecht R, Nowak-Król A. Molecules 2022; 27: 5510
- 27 Rao Y-L, Wang S. Organometallics 2011; 30: 4453
- 28 Domínguez Z, López-Rodríguez R, Álvarez E, Abbate S, Longhi G, Pischel U, Ros A. Chem. Eur. J. 2018; 24: 12660
- 29 Ros A, Estepa B, López-Rodríguez R, Álvarez E, Fernández R, Lassaletta JM. Angew. Chem. Int. Ed. 2011; 50: 11724
- 30 Huffman J, Thompson A, Kabalka G, Akula M. Synthesis 2005; 2005: 547
- 31 Mellerup SK, Rao YL, Amarne H, Wang S. Org. Lett. 2016; 18: 4436
- 32 Mellerup SK, Li C, Peng T, Wang S. Angew. Chem. Int. Ed. 2017; 56: 6093
- 33 Devillard M, Cordier M, Roisnel T, Dinoi C, Del Rosal I, Alcaraz G. Chem. Commun. 2022; 58: 1589
- 34 Horner L, Kaps U, Simons G. J. Organomet. Chem. 1985; 287: 1
- 35 Dou C, Ding Z, Zhang Z, Xie Z, Liu J, Wang L. Angew. Chem. Int. Ed. 2015; 54: 3648
- 36 Yan N, Wang F, Wei J, Song J, Yan L, Luo J, Fang Z, Wang Z, Zhang W, He G. Dyes Pigments 2019; 166: 410
- 37a Zou Y, Wang D, Wurst K, Kuhnel C, Reinhardt I, Decker U, Gurram V, Camadanli S, Buchmeiser MR. Chem. Eur. J. 2011; 17: 13832
- 37b Narayana GV, Xu G, Wang D, Frey W, Buchmeiser MR. ChemPlusChem 2014; 79: 151
- 38 van der Ende M, Wang D, Frey W, Buchmeiser MR. Chem. Cat. Chem. 2017; 9: 1242
- 39 Iqbal SA, Pahl J, Yuan K, Ingleson MJ. Chem. Soc. Rev. 2020; 49: 4564
- 40 Letsinger RL, MacLean DB. J. Am. Chem. Soc. 1963; 85: 2230
- 41 Ishida N, Moriya T, Goya T, Murakami M. J. Org. Chem. 2010; 75: 8709
- 42 Škoch K, Buziková M, Hnyk D, Litecká M, Kloda M, Kirakci K, Lang K. Chem. Eur. J. 2024; 30: e202403263
- 43 Kondrashov M, Provost D, Wendt OF. Dalton Trans. 2016; 45: 525
- 44 Wong H-L, Wong W-T, Yam VW-W. Org. Lett. 2012; 14: 1862
- 45 Shaikh AC, Ranade DS, Thorat S, Maity A, Kulkarni PP, Gonnade RG, Munshi P, Patil NT. Chem. Commun. 2015; 51: 16115
- 46 Wong BY, Wong HL, Wong YC, Chan MY, Yam VW. Chem. Eur. J. 2016; 22: 15095
- 47a Shen C, Srebro-Hooper M, Jean M, Vanthuyne N, Toupet L, Williams JA, Torres AR, Riives AJ, Muller G, Autschbach J, Crassous J. Chem. Eur. J. 2017; 23: 407
- 47b Full J, Panchal SP, Götz J, Krause A-M, Nowak-Król A. Angew. Chem. Int. Ed. 2021; 60: 4350
- 47c Full F, Wildervanck MJ, Volland D, Nowak-Król A. Synlett 2023; 34: 477
- 47d Full F, Artigas A, Wiegand K, Volland D, Szkodzińska K, Coquerel Y, Nowak-Król A. J. Am. Chem. Soc. 2024; 146: 29245
- 48 Dewar MJS, Kubba VP, Pettit R. J. Chem. Soc. 1958; 3073
- 49 Crossley DL, Cid J, Curless LD, Turner ML, Ingleson MJ. Organometallics 2015; 34: 5767
- 50 Crossley DL, Cade IA, Clark ER, Escande A, Humphries MJ, King SM, Vitorica-Yrezabal I, Ingleson MJ, Turner ML. Chem. Sci. 2015; 6: 5144
- 51a Liu K, Lalancette RA, Jäkle F. J. Am. Chem. Soc. 2017; 139: 18170
- 51b Liu K, Lalancette RA, Jäkle F. J. Am. Chem. Soc. 2019; 141: 7453
- 51c Zuo J, Liu K, Harrell J, Fang L, Piotrowiak P, Shimoyama D, Lalancette RA, Jäkle F. Angew. Chem. Int. Ed. 2024; 63: e202411855
- 51d Vanga M, Lalancette RA, Jäkle F. Chem. Eur. J. 2019; 25: 10133
- 51e Vanga M, Sahoo A, Lalancette RA, Jäkle F. Angew. Chem. Int. Ed. 2022; 61: e202113075
- 52 Nguyen T, Hannah TJ, Piers WE, Gelfand BS. Can. J. Chem. 2023; 101: 111
- 53 Oda S, Abe H, Yasuda N, Hatakeyama T. Chem. Asian. J. 2019; 14: 1657
- 54a Chen J, Lalancette RA, Jäkle F. Organometallics 2013; 32: 5843
- 54b Chen J, Lalancette RA, Jäkle F. Chem. Commun. 2013; 49: 4893
- 55 Zhang Z, Wang Y, Wang W, Yamamoto Y, Bao M, Yu X. Tetrahedron Lett. 2020; 61: 152199
- 56 Nguyen T, Dutton JL, Chang CY, Zhou W, Piers WE. Dalton Trans. 2024; 53: 7273
- 57 Yang K, Zhang G, Song Q. Chem. Sci. 2018; 9: 7666
- 58 Kim BJ, Matteson DS. Angew. Chem. Int. Ed. 2004; 43: 3056
- 59 Wisniewski SR, Guenther CL, Argintaru OA, Molander GA. J. Org. Chem. 2014; 79: 365
- 60 Hudnall TW, Lin T-P, Gabbaï FP. J. Fluor. Chem. 2010; 131: 1182
- 61 Tasior M, Kowalczyk P, Przybył M, Czichy M, Janasik P, Bousquet MHE, Łapkowski M, Rammo M, Rebane A, Jacquemin D, Gryko DT. Chem. Sci. 2021; 12: 15935
- 62 Bisht R, Haldar C, Hassan MMM, Hoque ME, Chaturvedi J, Chattopadhyay B. Chem. Soc. Rev. 2022; 51: 5042
- 63a Hiroto S, Hisaki I, Shinokubo H, Osuka A. Angew. Chem. Int. Ed. 2005; 44: 6763
- 63b Ros A, Fernández R, Lassaletta JM. Chem. Soc. Rev. 2014; 43: 3229
- 63c Ishiyama T, Takagi J, Yonekawa Y, Hartwig JF, Miyaura N. Adv. Synth. Catal. 2003; 345: 1103
- 63d Larsen MA, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 4287
- 64 Kuninobu Y, Iwanaga T, Omura T, Takai K. Angew. Chem. Int. Ed. 2013; 52: 4431
- 65 Yoshigoe Y, Kuninobu Y. Org. Lett. 2017; 19: 3450
- 66a Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
- 66b Lee-Ruff E, Mladenova G. Chem. Rev. 2003; 103: 1449
- 66c Carruthers W. Cycloaddition Reactions in Organic Synthesis. Elsevier; 2013
- 66d Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
- 67a Crepin DF, Harrity JP, Jiang J, Meijer AJ, Nassoy AC, Raubo P. J. Am. Chem. Soc. 2014; 136: 8642
- 67b Kirkham JD, Butlin RJ, Harrity JPA. Angew. Chem. Int. Ed. 2012; 51: 6402
- 67c Delaney PM, Browne DL, Adams H, Plant A, Harrity JPA. Tetrahedron 2008; 64: 866
- 68a Bachollet SPJ. T, Vivat JF, Cocker DC, Adams H, Harrity JPA. Chem. Eur. J. 2014; 20: 12889
- 68b Brown AW, Comas-Barceló J, Harrity JPA. Chem. Eur. J. 2017; 23: 5228
- 69 Vivat JF, Adams H, Harrity JPA. Org. Lett. 2010; 12: 160
- 70 Cousins DL, Lim YH, Harrity JPA. J. Org. Chem. 2022; 87: 9764
- 71 Schraff S, Sun Y, Pammer F. J. Mater. Chem. C 2017; 5: 1730
- 72 Koch R, Sun Y, Orthaber A, Pierik AJ, Pammer F. Org. Chem. Front. 2020; 7: 1437
- 73 Schepper J, Orthaber A, Pammer F. Chem. Eur. J. 2024; 30: e202401466
- 74a Baik C, Murphy SK, Wang S. Angew. Chem. Int. Ed. 2010; 49: 8224
- 74b Mellerup SK, Li C, Wang X, Wang S. J. Org. Chem. 2018; 83: 11970
- 75 Wang S, Yuan K, Hu MF, Wang X, Peng T, Wang N, Li QS. Angew. Chem. Int. Ed. 2018; 57: 1073
- 76 He ZC, Mellerup SK, Liu L, Wang X, Dao C, Wang S. Angew. Chem. Int. Ed. 2019; 58: 6683
- 77 He Z, Liu L, Zhao Z, Mellerup SK, Ge Y, Wang X, Wang N, Wang S. Chem. Eur. J. 2020; 26: 12403
- 78 Yuan K, Suzuki N, Mellerup SK, Wang X, Yamaguchi S, Wang S. Org. Lett. 2016; 18: 720
- 79a Yang D-T, Mellerup SK, Wang X, Lu J-S, Wang S. Angew. Chem. Int. Ed. 2015; 54: 5498
- 79b Shi Y-g, Yang D-T, Mellerup SK, Wang N, Peng T, Wang S. Org. Lett. 2016; 18: 1626
- 79c Grandl M, Schepper J, Maity S, Peukert A, von Hauff E, Pammer F. Macromolecules 2019; 52: 1013
- 79d Pammer F, Schepper J, Glöckler J, Sun Y, Orthaber A. Dalton Trans. 2019; 48: 10298
- 80a Yamaguchi S, Xu C, Tamao K. J. Am. Chem. Soc. 2003; 125: 13662
- 80b Xu C, Wakamiya A, Yamaguchi S. Org. Lett. 2004; 6: 3707
- 80c Xu C, Wakamiya A, Yamaguchi S. J. Am. Chem. Soc. 2005; 127: 1638
- 80d Okamoto T, Kudoh K, Wakamiya A, Yamaguchi S. Chem. Eur. J. 2007; 13: 548
- 80e Mouri K, Wakamiya A, Yamada H, Kajiwara T, Yamaguchi S. Org. Lett. 2007; 9: 93
- 80f Fukazawa A, Yamada H, Yamaguchi S. Angew. Chem. Int. Ed. 2008; 47: 5582
- 81 Yamaguchi S, Zhao Q, Zhang H, Wakamiya A. Synthesis 2008; 2009: 127
- 82 Wacker A, Pritzkow H, Siebert W. Eur. J. Inorg. Chem. 1998; 1998: 843
- 83 Vagedes D, Erker G, Kehr G, Bergander K, Kataeva O, Fröhlich R, Grimme S, Mück-Lichtenfeld C. Dalton Trans. 2003; 1337
- 84 Andre Job AW, Kehr G, Erker G, Yamaguchi S. Org. Lett. 2010; 12: 5470
- 85a Lik A, Fritze L, Müller L, Helten H. J. Am. Chem. Soc. 2017; 139: 5692
- 85b Baser-Kirazli N, Lalancette RA, Jäkle F. Angew. Chem. Int. Ed. 2020; 59: 8689
- 85c Hertz VM, Bolte M, Lerner H-W, Wagner M. Angew. Chem. Int. Ed. 2015; 54: 8800
- 85d Li H, Sundararaman A, Venkatasubbaiah K, Jäkle F. J. Am. Chem. Soc. 2007; 129: 5792
- 86 Volland D, Niedens J, Geppert PT, Wildervanck MJ, Full F, Nowak-Król A. Angew. Chem. Int. Ed. 2023; 62: e202304291
- 87a Zu B, Guo Y, He C. J. Am. Chem. Soc. 2021; 143: 16302
- 87b Zhang G, Zhang Z, Hou M, Cai X, Yang K, Yu P, Song Q. Nat. Commun. 2022; 13: 2624
- 87c Zhang G, Cai X, Jia J, Feng B, Yang K, Song Q. ACS Catal. 2023; 13: 9502
- 87d Stöckl Y, Tait EJ, Frey W, Wegner S, Claasen B, Zens A, Laschat S. Chem. Eur. J. 2023; 29: e202301324
- 87e Stöckl Y, Gugeler K, Holzwarth CM, Frey W, Wegner S, Claasen B, Zens A, Gudat D, Sindlinger CP, Kästner J, Laschat S. Organometallics 2024; 43: 330