Subscribe to RSS
DOI: 10.1055/a-2601-9480
Intestinal Microbes, Metabolites, and Hormones in Alcohol-Associated Liver Disease
Funding This work was supported by the National Natural Science Foundation of China (82003811), the Natural Science Foundation of the Anhui Higher Education Institutions(2023AH050554), and funds from Anhui Medical University (2019xkj002 and XJ201917).

Abstract
Alcohol-associated liver disease (ALD)—encompassing conditions including steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma—refers to hepatic damage arising from excessive or hazardous alcohol consumption, and is now recognized as a significant global health burden. Although the mechanisms underlying ALD remain incompletely understood, several pathways have been substantiated over the last five decades, notably the involvement of intestinal microorganisms and the involvement of the gut–liver axis in alcohol metabolism and ALD pathogenesis. Ethanol intake disrupts the intestinal microbial balance and compromises the gut barrier, resulting in increased permeability to microbial products. The subsequent translocation of microbial metabolites and other antigenic substances to the liver activates hepatic immune responses, thereby contributing to liver injury. In addition, gastrointestinal hormones are also implicated in ALD progression through various mechanisms. Although no therapies for ALD have been approved by the Food and Drug Administration, various therapeutic strategies targeting the intestinal microbiota and gut barrier have been identified. In conclusion, this review discusses the role of the gut–liver axis in alcohol metabolism and ALD pathogenesis and explores the emerging therapeutic strategies.
Keywords
alcohol-associated liver disease - bacterial products - gastrointestinal hormones - microbial therapyAuthors' Contributions
R.W. wrote the original draft and prepared pictures. X.W. and H.W. presented the idea and designed the whole outline of this review and revised the final manuscript. F.M. contributed to table preparation. F.M. and D.Y. participated in manuscript editing and data curation. All authors approved the final manuscript.
Publication History
Accepted Manuscript online:
07 May 2025
Article published online:
21 May 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1
Asrani SK,
Devarbhavi H,
Eaton J,
Kamath PS.
Burden of liver diseases in the world. J Hepatol 2019; 70 (01) 151-171
MissingFormLabel
- 2
Niu X,
Zhu L,
Xu Y.
et al.
Global prevalence, incidence, and outcomes of alcohol related liver diseases: a systematic
review and meta-analysis. BMC Public Health 2023; 23 (01) 859
MissingFormLabel
- 3
Mackowiak B,
Fu Y,
Maccioni L,
Gao B.
Alcohol-associated liver disease. J Clin Invest 2024; 134 (03) e176345
MissingFormLabel
- 4
Gao H,
Jiang Y,
Zeng G.
et al.
Cell-to-cell and organ-to-organ crosstalk in the pathogenesis of alcohol-associated
liver disease. eGastroenterology 2024; 2 (04) e100104
MissingFormLabel
- 5
Askgaard G,
Leon DA,
Kjaer MS,
Deleuran T,
Gerds TA,
Tolstrup JS.
Risk for alcoholic liver cirrhosis after an initial hospital contact with alcohol
problems: a nationwide prospective cohort study. Hepatology 2017; 65 (03) 929-937
MissingFormLabel
- 6
Askgaard G,
Grønbæk M,
Kjær MS,
Tjønneland A,
Tolstrup JS.
Alcohol drinking pattern and risk of alcoholic liver cirrhosis: a prospective cohort
study. J Hepatol 2015; 62 (05) 1061-1067
MissingFormLabel
- 7
Pemmasani G,
Tremaine WJ,
Suresh Kumar VC.
et al.
Sex differences in clinical characteristics and outcomes associated with alcoholic
hepatitis. Eur J Gastroenterol Hepatol 2023; 35 (10) 1192-1196
MissingFormLabel
- 8
Fu Y,
Mackowiak B,
Lin YH.
et al.
Coordinated action of a gut-liver pathway drives alcohol detoxification and consumption.
Nat Metab 2024; 6 (07) 1380-1396
MissingFormLabel
- 9
Johansson ME,
Phillipson M,
Petersson J,
Velcich A,
Holm L,
Hansson GC.
The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria.
Proc Natl Acad Sci U S A 2008; 105 (39) 15064-15069
MissingFormLabel
- 10
Chopyk DM,
Kumar P,
Raeman R,
Liu Y,
Smith T,
Anania FA.
Dysregulation of junctional adhesion molecule-A contributes to ethanol-induced barrier
disruption in intestinal epithelial cell monolayers. Physiol Rep 2017; 5 (23) e13541
MissingFormLabel
- 11
Elamin E,
Masclee A,
Dekker J,
Jonkers D.
Ethanol disrupts intestinal epithelial tight junction integrity through intracellular
calcium-mediated Rho/ROCK activation. Am J Physiol Gastrointest Liver Physiol 2014;
306 (08) G677-G685
MissingFormLabel
- 12
Ferrier L,
Bérard F,
Debrauwer L.
et al.
Impairment of the intestinal barrier by ethanol involves enteric microflora and mast
cell activation in rodents. Am J Pathol 2006; 168 (04) 1148-1154
MissingFormLabel
- 13
Wang W,
Wang C,
Xu H,
Gao Y.
Aldehyde dehydrogenase, liver disease and cancer. Int J Biol Sci 2020; 16 (06) 921-934
MissingFormLabel
- 14
Cederbaum AI.
Alcohol metabolism. Clin Liver Dis 2012; 16 (04) 667-685
MissingFormLabel
- 15
Hyun J,
Han J,
Lee C,
Yoon M,
Jung Y.
Pathophysiological aspects of alcohol metabolism in the liver. Int J Mol Sci 2021;
22 (11) 5717
MissingFormLabel
- 16
Zakhari S.
Overview: how is alcohol metabolized by the body?. Alcohol Res Health 2006; 29 (04)
245-254
MissingFormLabel
- 17
Tuma DJ,
Casey CA.
Dangerous byproducts of alcohol breakdown-focus on adducts. Alcohol Res Health 2003;
27 (04) 285-290
MissingFormLabel
- 18
Leclercq S,
Matamoros S,
Cani PD.
et al.
Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence
severity. Proc Natl Acad Sci U S A 2014; 111 (42) E4485-E4493
MissingFormLabel
- 19
Mutlu EA,
Gillevet PM,
Rangwala H.
et al.
Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol
2012; 302 (09) G966-G978
MissingFormLabel
- 20
Duan Y,
Llorente C,
Lang S.
et al.
Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature
2019; 575 (7783) 505-511
MissingFormLabel
- 21
Ghosh G,
Jesudian AB.
Small intestinal bacterial overgrowth in patients with cirrhosis. J Clin Exp Hepatol
2019; 9 (02) 257-267
MissingFormLabel
- 22
Bull-Otterson L,
Feng W,
Kirpich I.
et al.
Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome
and the effect of Lactobacillus rhamnosus GG treatment. PLoS One 2013; 8 (01) e53028
MissingFormLabel
- 23
Grander C,
Adolph TE,
Wieser V.
et al.
Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic
liver disease. Gut 2018; 67 (05) 891-901
MissingFormLabel
- 24
Philips CA,
Pande A,
Shasthry SM.
et al.
Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic
hepatitis: a pilot study. Clin Gastroenterol Hepatol 2017; 15 (04) 600-602
MissingFormLabel
- 25
Seitz HK,
Simanowski UA,
Garzon FT.
et al.
Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat.
Gastroenterology 1990; 98 (02) 406-413
MissingFormLabel
- 26
Martino C,
Zaramela LS,
Gao B.
et al.
Acetate reprograms gut microbiota during alcohol consumption. Nat Commun 2022; 13
(01) 4630
MissingFormLabel
- 27
Albillos A,
de Gottardi A,
Rescigno M.
The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol
2020; 72 (03) 558-577
MissingFormLabel
- 28
Kurashima Y,
Kiyono H.
Mucosal ecological network of epithelium and immune cells for gut homeostasis and
tissue healing. Annu Rev Immunol 2017; 35: 119-147
MissingFormLabel
- 29
Furness JB,
Kunze WA,
Clerc N.
Nutrient tasting and signaling mechanisms in the gut. II. The intestine as a sensory
organ: neural, endocrine, and immune responses. Am J Physiol 1999; 277 (05) G922-G928
MissingFormLabel
- 30
Natividad JM,
Verdu EF.
Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic
implications. Pharmacol Res 2013; 69 (01) 42-51
MissingFormLabel
- 31
Hayes CL,
Dong J,
Galipeau HJ.
et al.
Commensal microbiota induces colonic barrier structure and functions that contribute
to homeostasis. Sci Rep 2018; 8 (01) 14184
MissingFormLabel
- 32
Schoultz I,
Keita ÅV.
The intestinal barrier and current techniques for the assessment of gut permeability.
Cells 2020; 9 (08) 1909
MissingFormLabel
- 33
Venugopal S,
Anwer S,
Szászi K.
Claudin-2: roles beyond permeability functions. Int J Mol Sci 2019; 20 (22) 5655
MissingFormLabel
- 34
Tonetti FR,
Eguileor A,
Llorente C.
Goblet cells: guardians of gut immunity and their role in gastrointestinal diseases.
eGastroenterology 2024; 2 (03) e100098
MissingFormLabel
- 35
Portincasa P,
Bonfrate L,
Khalil M.
et al.
Intestinal barrier and permeability in health, obesity and NAFLD. Biomedicines 2021;
10 (01) 83
MissingFormLabel
- 36
Kim YS,
Ho SB.
Intestinal goblet cells and mucins in health and disease: recent insights and progress.
Curr Gastroenterol Rep 2010; 12 (05) 319-330
MissingFormLabel
- 37
Sarin SK,
Pande A,
Schnabl B.
Microbiome as a therapeutic target in alcohol-related liver disease. J Hepatol 2019;
70 (02) 260-272
MissingFormLabel
- 38
Kelly CJ,
Zheng L,
Campbell EL.
et al.
Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial
hif augments tissue barrier function. Cell Host Microbe 2015; 17 (05) 662-671
MissingFormLabel
- 39
Litvak Y,
Mon KKZ,
Nguyen H.
et al.
Commensal enterobacteriaceae protect against salmonella colonization through oxygen
competition. Cell Host Microbe 2019; 25 (01) 128-139.e5
MissingFormLabel
- 40
Ueda Y,
Kayama H,
Jeon SG.
et al.
Commensal microbiota induce LPS hyporesponsiveness in colonic macrophages via the
production of IL-10. Int Immunol 2010; 22 (12) 953-962
MissingFormLabel
- 41
Hoffmann C,
Dollive S,
Grunberg S.
et al.
Archaea and fungi of the human gut microbiome: correlations with diet and bacterial
residents. PLoS One 2013; 8 (06) e66019
MissingFormLabel
- 42
Nash AK,
Auchtung TA,
Wong MC.
et al.
The gut mycobiome of the human microbiome project healthy cohort. Microbiome 2017;
5 (01) 153
MissingFormLabel
- 43
Yeung F,
Chen YH,
Lin JD.
et al.
Altered immunity of laboratory mice in the natural environment is associated with
fungal colonization. Cell Host Microbe 2020; 27 (05) 809-822.e6
MissingFormLabel
- 44
Erb Downward JR,
Falkowski NR,
Mason KL,
Muraglia R,
Huffnagle GB.
Modulation of post-antibiotic bacterial community reassembly and host response by
Candida albicans. Sci Rep 2013; 3: 2191
MissingFormLabel
- 45
Mason KL,
Erb Downward JR,
Mason KD.
et al.
Candida albicans and bacterial microbiota interactions in the cecum during recolonization
following broad-spectrum antibiotic therapy. Infect Immun 2012; 80 (10) 3371-3380
MissingFormLabel
- 46
Bajaj JS,
Liu EJ,
Kheradman R.
et al.
Fungal dysbiosis in cirrhosis. Gut 2018; 67 (06) 1146-1154
MissingFormLabel
- 47
Sender R,
Fuchs S,
Milo R.
Revised estimates for the number of human and bacteria cells in the body. PLoS Biol
2016; 14 (08) e1002533
MissingFormLabel
- 48
Gregory AC,
Zablocki O,
Zayed AA,
Howell A,
Bolduc B,
Sullivan MB.
The gut virome database reveals age-dependent patterns of virome diversity in the
human gut. Cell Host Microbe 2020; 28 (05) 724-740.e8
MissingFormLabel
- 49
Garmaeva S,
Gulyaeva A,
Sinha T.
et al.
Stability of the human gut virome and effect of gluten-free diet. Cell Rep 2021; 35
(07) 109132
MissingFormLabel
- 50
Metzger RN,
Krug AB,
Eisenächer K.
Enteric virome sensing-its role in intestinal homeostasis and immunity. Viruses 2018;
10 (04) 146
MissingFormLabel
- 51
Keen EC,
Dantas G.
Close encounters of three kinds: bacteriophages, commensal bacteria, and host immunity.
Trends Microbiol 2018; 26 (11) 943-954
MissingFormLabel
- 52
Tetz GV,
Ruggles KV,
Zhou H,
Heguy A,
Tsirigos A,
Tetz V.
Bacteriophages as potential new mammalian pathogens. Sci Rep 2017; 7 (01) 7043
MissingFormLabel
- 53
Tetz G,
Tetz V.
Bacteriophage infections of microbiota can lead to leaky gut in an experimental rodent
model. Gut Pathog 2016; 8: 33
MissingFormLabel
- 54
Carding SR,
Davis N,
Hoyles L.
Review article: the human intestinal virome in health and disease. Aliment Pharmacol
Ther 2017; 46 (09) 800-815
MissingFormLabel
- 55
Maccioni L,
Fu Y,
Horsmans Y.
et al.
Alcohol-associated bowel disease: new insights into pathogenesis. eGastroenterology
2023; 1 (01) e100013
MissingFormLabel
- 56
Dunagan M,
Chaudhry K,
Samak G,
Rao RK.
Acetaldehyde disrupts tight junctions in Caco-2 cell monolayers by a protein phosphatase
2A-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2012; 303 (12) G1356-G1364
MissingFormLabel
- 57
Li W,
Zhou Y,
Pang N.
et al.
NAD supplement alleviates intestinal barrier injury induced by ethanol via protecting
epithelial mitochondrial function. Nutrients 2022; 15 (01) 174
MissingFormLabel
- 58
Chen P,
Stärkel P,
Turner JR,
Ho SB,
Schnabl B.
Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor
I and mediates alcoholic liver disease in mice. Hepatology 2015; 61 (03) 883-894
MissingFormLabel
- 59
Chang B,
Sang L,
Wang Y,
Tong J,
Wang B.
The role of FoxO4 in the relationship between alcohol-induced intestinal barrier dysfunction
and liver injury. Int J Mol Med 2013; 31 (03) 569-576
MissingFormLabel
- 60
Rungratanawanich W,
Lin Y,
Wang X,
Kawamoto T,
Chidambaram SB,
Song BJ.
ALDH2 deficiency increases susceptibility to binge alcohol-induced gut leakiness,
endotoxemia, and acute liver injury in mice through the gut-liver axis. Redox Biol
2023; 59: 102577
MissingFormLabel
- 61
Seki E,
Schnabl B.
Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the
liver and gut. J Physiol 2012; 590 (03) 447-458
MissingFormLabel
- 62
Kumar V,
Mansfield J,
Fan R,
MacLean A,
Li J,
Mohan M.
miR-130a and miR-212 disrupt the intestinal epithelial barrier through modulation
of PPARγ and occludin expression in chronic simian immunodeficiency virus-infected
rhesus macaques. J Immunol 2018; 200 (08) 2677-2689
MissingFormLabel
- 63
Tang Y,
Banan A,
Forsyth CB.
et al.
Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential
role in alcoholic liver disease. Alcohol Clin Exp Res 2008; 32 (02) 355-364
MissingFormLabel
- 64
Forsyth CB,
Voigt RM,
Shaikh M.
et al.
Role for intestinal CYP2E1 in alcohol-induced circadian gene-mediated intestinal hyperpermeability.
Am J Physiol Gastrointest Liver Physiol 2013; 305 (02) G185-G195
MissingFormLabel
- 65
Li W,
Gao W,
Yan S,
Yang L,
Zhu Q,
Chu H.
Gut microbiota as emerging players in the development of alcohol-related liver disease.
Biomedicines 2024; 13 (01) 74
MissingFormLabel
- 66
Zhou R,
Llorente C,
Cao J.
et al.
Deficiency of intestinal α1-2-fucosylation exacerbates ethanol-induced liver disease
in mice. Alcohol Clin Exp Res 2020; 44 (09) 1842-1851
MissingFormLabel
- 67
Llopis M,
Cassard AM,
Wrzosek L.
et al.
Intestinal microbiota contributes to individual susceptibility to alcoholic liver
disease. Gut 2016; 65 (05) 830-839
MissingFormLabel
- 68
Bala S,
Marcos M,
Gattu A,
Catalano D,
Szabo G.
Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy
individuals. PLoS One 2014; 9 (05) e96864
MissingFormLabel
- 69
Wang L,
Fouts DE,
Stärkel P.
et al.
Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated
microbiota and preventing bacterial translocation. Cell Host Microbe 2016; 19 (02)
227-239
MissingFormLabel
- 70
Hartmann P,
Chen P,
Wang HJ.
et al.
Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease
in mice. Hepatology 2013; 58 (01) 108-119
MissingFormLabel
- 71
Hendrikx T,
Duan Y,
Wang Y.
et al.
Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce
ethanol-induced liver disease in mice. Gut 2019; 68 (08) 1504-1515
MissingFormLabel
- 72
Bluemel S,
Wang L,
Kuelbs C.
et al.
Intestinal and hepatic microbiota changes associated with chronic ethanol administration
in mice. Gut Microbes 2020; 11 (03) 265-275
MissingFormLabel
- 73
Yan AW,
Fouts DE,
Brandl J.
et al.
Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology
2011; 53 (01) 96-105
MissingFormLabel
- 74
Chen Y,
Yang F,
Lu H.
et al.
Characterization of fecal microbial communities in patients with liver cirrhosis.
Hepatology 2011; 54 (02) 562-572
MissingFormLabel
- 75
Sokol H,
Pigneur B,
Watterlot L.
et al.
Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified
by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008;
105 (43) 16731-16736
MissingFormLabel
- 76
Llorente C,
Jepsen P,
Inamine T.
et al.
Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of
intestinal Enterococcus. Nat Commun 2017; 8 (01) 837
MissingFormLabel
- 77
Zhao ZH,
Wang ZX,
Zhou D.
et al.
Sodium butyrate supplementation inhibits hepatic steatosis by stimulating liver kinase
B1 and insulin-induced gene. Cell Mol Gastroenterol Hepatol 2021; 12 (03) 857-871
MissingFormLabel
- 78
Rao J,
Wang H,
Ni M.
et al.
FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating
the intracellular function of PKM2. Gut 2022; 71 (12) 2539-2550
MissingFormLabel
- 79
Qin N,
Yang F,
Li A.
et al.
Alterations of the human gut microbiome in liver cirrhosis. Nature 2014; 513 (7516)
59-64
MissingFormLabel
- 80
Seki E,
Brenner DA.
Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 2008;
48 (01) 322-335
MissingFormLabel
- 81
Seki E,
De Minicis S,
Osterreicher CH.
et al.
TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007; 13 (11) 1324-1332
MissingFormLabel
- 82
Roderburg C,
Urban GW,
Bettermann K.
et al.
Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis.
Hepatology 2011; 53 (01) 209-218
MissingFormLabel
- 83
Caesar R,
Reigstad CS,
Bäckhed HK.
et al.
Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not
essential for impaired glucose or insulin tolerance in mice. Gut 2012; 61 (12) 1701-1707
MissingFormLabel
- 84
Gu M,
Samuelson DR,
Taylor CM.
et al.
Alcohol-associated intestinal dysbiosis alters mucosal-associated invariant T-cell
phenotype and function. Alcohol Clin Exp Res 2021; 45 (05) 934-947
MissingFormLabel
- 85
Zeng S,
Schnabl B.
Roles for the mycobiome in liver disease. Liver Int 2022; 42 (04) 729-741
MissingFormLabel
- 86
Lang S,
Duan Y,
Liu J.
et al.
Intestinal fungal dysbiosis and systemic immune response to fungi in patients with
alcoholic hepatitis. Hepatology 2020; 71 (02) 522-538
MissingFormLabel
- 87
Hartmann P,
Lang S,
Zeng S.
et al.
Dynamic changes of the fungal microbiome in alcohol use disorder. Front Physiol 2021;
12: 699253
MissingFormLabel
- 88
Wu J,
Wu D,
Ma K.
et al.
Paeonol ameliorates murine alcohol liver disease via mycobiota-mediated Dectin-1/IL-1β
signaling pathway. J Leukoc Biol 2020; 108 (01) 199-214
MissingFormLabel
- 89
Moyes DL,
Wilson D,
Richardson JP.
et al.
Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016;
532 (7597) 64-68
MissingFormLabel
- 90
Chu H,
Duan Y,
Lang S.
et al.
The Candida albicans exotoxin candidalysin promotes alcohol-associated liver disease.
J Hepatol 2020; 72 (03) 391-400
MissingFormLabel
- 91
Jiang L,
Lang S,
Duan Y.
et al.
Intestinal virome in patients with alcoholic hepatitis. Hepatology 2020; 72 (06) 2182-2196
MissingFormLabel
- 92
Hsu CL,
Zhang X,
Jiang L.
et al.
Intestinal virome in patients with alcohol use disorder and after abstinence. Hepatol
Commun 2022; 6 (08) 2058-2069
MissingFormLabel
- 93
Mendes BG,
Duan Y,
Schnabl B.
Immune response of an oral enterococcus faecalis phage cocktail in a mouse model of
ethanol-induced liver disease. Viruses 2022; 14 (03) 490
MissingFormLabel
- 94
Campbell DE,
Ly LK,
Ridlon JM,
Hsiao A,
Whitaker RJ,
Degnan PH.
Infection with bacteroides phage BV01 alters the host transcriptome and bile acid
metabolism in a common human gut microbe. Cell Rep 2020; 32 (11) 108142
MissingFormLabel
- 95
Hartmann P,
Hochrath K,
Horvath A.
et al.
Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor
15 axis improves alcoholic liver disease in mice. Hepatology 2018; 67 (06) 2150-2166
MissingFormLabel
- 96
Lang S,
Schnabl B.
Microbiota and fatty liver disease-the known, the unknown, and the future. Cell Host
Microbe 2020; 28 (02) 233-244
MissingFormLabel
- 97
Friedman ES,
Li Y,
Shen TD.
et al.
FXR-dependent modulation of the human small intestinal microbiome by the bile acid
derivative obeticholic acid. Gastroenterology 2018; 155 (06) 1741-1752.e5
MissingFormLabel
- 98
Inagaki T,
Moschetta A,
Lee YK.
et al.
Regulation of antibacterial defense in the small intestine by the nuclear bile acid
receptor. Proc Natl Acad Sci U S A 2006; 103 (10) 3920-3925
MissingFormLabel
- 99
Staley C,
Weingarden AR,
Khoruts A,
Sadowsky MJ.
Interaction of gut microbiota with bile acid metabolism and its influence on disease
states. Appl Microbiol Biotechnol 2017; 101 (01) 47-64
MissingFormLabel
- 100
Jiang L,
Schnabl B.
Gut microbiota in liver disease: what do we know and what do we not know?. Physiology
(Bethesda) 2020; 35 (04) 261-274
MissingFormLabel
- 101
Wu WB,
Chen YY,
Zhu B,
Peng XM,
Zhang SW,
Zhou ML.
Excessive bile acid activated NF-kappa B and promoted the development of alcoholic
steatohepatitis in farnesoid X receptor deficient mice. Biochimie 2015; 115: 86-92
MissingFormLabel
- 102
Zafari N,
Velayati M,
Fahim M.
et al.
Role of gut bacterial and non-bacterial microbiota in alcohol-associated liver disease:
molecular mechanisms, biomarkers, and therapeutic prospective. Life Sci 2022; 305:
120760
MissingFormLabel
- 103
Kakiyama G,
Hylemon PB,
Zhou H.
et al.
Colonic inflammation and secondary bile acids in alcoholic cirrhosis. Am J Physiol
Gastrointest Liver Physiol 2014; 306 (11) G929-G937
MissingFormLabel
- 104
Huang M,
Kong B,
Zhang M.
et al.
Enhanced alcoholic liver disease in mice with intestine-specific farnesoid X receptor
deficiency. Lab Invest 2020; 100 (09) 1158-1168
MissingFormLabel
- 105
Feng S,
Xie X,
Li J.
et al.
Bile acids induce liver fibrosis through the NLRP3 inflammasome pathway and the mechanism
of FXR inhibition of NLRP3 activation. Hepatol Int 2024; 18 (03) 1040-1052
MissingFormLabel
- 106
Louis P,
Young P,
Holtrop G,
Flint HJ.
Diversity of human colonic butyrate-producing bacteria revealed by analysis of the
butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol 2010; 12 (02) 304-314
MissingFormLabel
- 107
Schulthess J,
Pandey S,
Capitani M.
et al.
The short chain fatty acid butyrate imprints an antimicrobial program in macrophages.
Immunity 2019; 50 (02) 432-445.e7
MissingFormLabel
- 108
Zheng L,
Kelly CJ,
Battista KD.
et al.
Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent
repression of claudin-2. J Immunol 2017; 199 (08) 2976-2984
MissingFormLabel
- 109
den Besten G,
Bleeker A,
Gerding A.
et al.
Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent
switch from lipogenesis to fat oxidation. Diabetes 2015; 64 (07) 2398-2408
MissingFormLabel
- 110
Cresci GA,
Glueck B,
McMullen MR,
Xin W,
Allende D,
Nagy LE.
Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal
barrier and liver injury. J Gastroenterol Hepatol 2017; 32 (09) 1587-1597
MissingFormLabel
- 111
Chen P,
Torralba M,
Tan J.
et al.
Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis
and reduces ethanol-induced liver injury in mice. Gastroenterology 2015; 148 (01)
203-214.e16
MissingFormLabel
- 112
Peng L,
Li ZR,
Green RS,
Holzman IR,
Lin J.
Butyrate enhances the intestinal barrier by facilitating tight junction assembly via
activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 2009;
139 (09) 1619-1625
MissingFormLabel
- 113
Gaudier E,
Rival M,
Buisine MP,
Robineau I,
Hoebler C.
Butyrate enemas upregulate Muc genes expression but decrease adherent mucus thickness
in mice colon. Physiol Res 2009; 58 (01) 111-119
MissingFormLabel
- 114
Wang HB,
Wang PY,
Wang X,
Wan YL,
Liu YC.
Butyrate enhances intestinal epithelial barrier function via up-regulation of tight
junction protein Claudin-1 transcription. Dig Dis Sci 2012; 57 (12) 3126-3135
MissingFormLabel
- 115
Zhuge A,
Li S,
Han S.
et al.
Akkermansia muciniphila-derived acetate activates the hepatic AMPK/SIRT1/PGC-1α axis
to alleviate ferroptosis in metabolic-associated fatty liver disease. Acta Pharm Sin
B 2025; 15 (01) 151-167
MissingFormLabel
- 116
Zelante T,
Iannitti RG,
Cunha C.
et al.
Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance
mucosal reactivity via interleukin-22. Immunity 2013; 39 (02) 372-385
MissingFormLabel
- 117
Lee JH,
Wada T,
Febbraio M.
et al.
A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis.
Gastroenterology 2010; 139 (02) 653-663
MissingFormLabel
- 118
Lee JS,
Cella M,
McDonald KG.
et al.
AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways
dependent on and independent of Notch. Nat Immunol 2011; 13 (02) 144-151
MissingFormLabel
- 119
Tanos R,
Murray IA,
Smith PB,
Patterson A,
Perdew GH.
Role of the Ah receptor in homeostatic control of fatty acid synthesis in the liver.
Toxicol Sci 2012; 129 (02) 372-379
MissingFormLabel
- 120
Wrzosek L,
Ciocan D,
Hugot C.
et al.
Microbiota tryptophan metabolism induces aryl hydrocarbon receptor activation and
improves alcohol-induced liver injury. Gut 2021; 70 (07) 1299-1308
MissingFormLabel
- 121
Xu R,
Vatsalya V,
He L.
et al.
Altered urinary tryptophan metabolites in alcohol-associated liver disease. Alcohol
Clin Exp Res (Hoboken) 2023; 47 (09) 1665-1676
MissingFormLabel
- 122
Hu W,
Naimi S,
Trainel N.
et al.
Minibioreactor arrays to model microbiome response to alcohol and tryptophan in the
context of alcohol-associated liver disease. NPJ Biofilms Microbiomes 2024; 10 (01)
132
MissingFormLabel
- 123
Liu C,
Wang Y,
Sheng L.
et al.
3-Hydroxypropionaldehyde modulates tryptophan metabolism to activate AhR signaling
and alleviate ethanol-induced liver injury. Phytomedicine 2025; 139: 156445
MissingFormLabel
- 124
Helsley RN,
Miyata T,
Kadam A.
et al.
Gut microbial trimethylamine is elevated in alcohol-associated hepatitis and contributes
to ethanol-induced liver injury in mice. eLife 2022; 11: e76554
MissingFormLabel
- 125
Ma R,
Shi G,
Li Y,
Shi H.
Trimethylamine N-oxide, choline and its metabolites are associated with the risk of
non-alcoholic fatty liver disease. Br J Nutr 2024; 131 (11) 1915-1923
MissingFormLabel
- 126
Guetterman HM,
Huey SL,
Knight R,
Fox AM,
Mehta S,
Finkelstein JL.
Vitamin B-12 and the gastrointestinal microbiome: a systematic review. Adv Nutr 2022;
13 (02) 530-558
MissingFormLabel
- 127
Muro N,
Bujanda L,
Sarasqueta C.
et al.
Niveles plasmáticos de la vitamina B(12) y ácido fólico en pacientes con hepatopatía
crónica. [Plasma levels of folate and vitamin B(12) in patients with chronic liver
disease]. Gastroenterol Hepatol 2010; 33 (04) 280-287
MissingFormLabel
- 128
Li R,
Xie L,
Li L.
et al.
The gut microbial metabolite, 3,4-dihydroxyphenylpropionic acid, alleviates hepatic
ischemia/reperfusion injury via mitigation of macrophage pro-inflammatory activity
in mice. Acta Pharm Sin B 2022; 12 (01) 182-196
MissingFormLabel
- 129
Yu L,
Lu J,
Du W.
Tryptophan metabolism in digestive system tumors: unraveling the pathways and implications.
Cell Commun Signal 2024; 22 (01) 174
MissingFormLabel
- 130
Horst AK,
Kumashie KG,
Neumann K,
Diehl L,
Tiegs G.
Antigen presentation, autoantibody production, and therapeutic targets in autoimmune
liver disease. Cell Mol Immunol 2021; 18 (01) 92-111
MissingFormLabel
- 131
Krishnan S,
Ding Y,
Saedi N.
et al.
Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes
and macrophages. Cell Rep 2018; 23 (04) 1099-1111
MissingFormLabel
- 132
Gribble FM,
Reimann F.
Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat
Rev Endocrinol 2019; 15 (04) 226-237
MissingFormLabel
- 133
Kharbanda KK,
Farokhnia M,
Deschaine SL.
et al.
Role of the ghrelin system in alcohol use disorder and alcohol-associated liver disease:
a narrative review. Alcohol Clin Exp Res 2022; 46 (12) 2149-2159
MissingFormLabel
- 134
Rasineni K,
Thomes PG,
Kubik JL,
Harris EN,
Kharbanda KK,
Casey CA.
Chronic alcohol exposure alters circulating insulin and ghrelin levels: role of ghrelin
in hepatic steatosis. Am J Physiol Gastrointest Liver Physiol 2019; 316 (04) G453-G461
MissingFormLabel
- 135
Quiñones M,
Fernø J,
Al-Massadi O.
Ghrelin and liver disease. Rev Endocr Metab Disord 2020; 21 (01) 45-56
MissingFormLabel
- 136
Ishioh M,
Nozu T,
Igarashi S.
et al.
Activation of central adenosine A2B receptors mediate brain ghrelin-induced improvement
of intestinal barrier function through the vagus nerve in rats. Exp Neurol 2021; 341:
113708
MissingFormLabel
- 137
Zhu L,
Dou Z,
Wu W.
et al.
Ghrelin/GHSR axis induced M2 macrophage and alleviated intestinal barrier dysfunction
in a sepsis rat model by inactivating E2F1/NF-κB signaling. Can J Gastroenterol Hepatol
2023; 2023: 1629777
MissingFormLabel
- 138
Cheng Y,
Wei Y,
Yang W.
et al.
Ghrelin attenuates intestinal barrier dysfunction following intracerebral hemorrhage
in mice. Int J Mol Sci 2016; 17 (12) 2032
MissingFormLabel
- 139
Kyritsi K,
Wu N,
Zhou T.
et al.
Knockout of secretin ameliorates biliary and liver phenotypes during alcohol-induced
hepatotoxicity. Cell Biosci 2023; 13 (01) 5
MissingFormLabel
- 140
Chen Y,
Xu YN,
Ye CY.
et al.
GLP-1 mimetics as a potential therapy for nonalcoholic steatohepatitis. Acta Pharmacol
Sin 2022; 43 (05) 1156-1166
MissingFormLabel
- 141
Kuo CC,
Li CH,
Chuang MH,
Huang PY,
Kuo HT,
Lai CC.
Impact of GLP-1 receptor agonists on alcohol-related liver disease development and
progression in alcohol use disorder. Aliment Pharmacol Ther 2025; 61 (08) 1343-1356
MissingFormLabel
- 142
Mahalingam S,
Bellamkonda R,
Arumugam MK.
et al.
Glucagon-like peptide 1 receptor agonist, exendin-4, reduces alcohol-associated fatty
liver disease. Biochem Pharmacol 2023; 213: 115613
MissingFormLabel
- 143
Connor EE,
Evock-Clover CM,
Wall EH.
et al.
Glucagon-like peptide 2 and its beneficial effects on gut function and health in production
animals. Domest Anim Endocrinol 2016; 56: S56-S65
MissingFormLabel
- 144
Taher J,
Baker C,
Alvares D,
Ijaz L,
Hussain M,
Adeli K.
GLP-2 dysregulates hepatic lipoprotein metabolism, inducing fatty liver and VLDL overproduction
in male hamsters and mice. Endocrinology 2018; 159 (09) 3340-3350
MissingFormLabel
- 145
Musso G,
Alberto M,
Mariano F.
et al.
Impaired postprandial GLP-2 response enhances endotoxemia, systemic inflammation,
and kidney injury in metabolic dysfunction-associated steatohepatitis (MASH): effect
of phospholipid curcumin meriva. Gut Microbes 2024; 16 (01) 2424907
MissingFormLabel
- 146
Fuchs CD,
Claudel T,
Mlitz V.
et al.
GLP-2 improves hepatic inflammation and fibrosis in Mdr2−/− mice via activation of NR4a1/Nur77 in hepatic stellate cells and intestinal FXR signaling.
Cell Mol Gastroenterol Hepatol 2023; 16 (05) 847-856
MissingFormLabel
- 147
Fuchs S,
Yusta B,
Baggio LL,
Varin EM,
Matthews D,
Drucker DJ.
Loss of Glp2r signaling activates hepatic stellate cells and exacerbates diet-induced
steatohepatitis in mice. JCI Insight 2020; 5 (08) e136907
MissingFormLabel
- 148
Kim ER,
Park JS,
Kim JH.
et al.
A GLP-1/GLP-2 receptor dual agonist to treat NASH: Targeting the gut-liver axis and
microbiome. Hepatology 2022; 75 (06) 1523-1538
MissingFormLabel
- 149
Iwasaki M,
Akiba Y,
Kaunitz JD.
Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus
on the gastrointestinal system. F1000Res. 2019;8:F1000. Fac Rev 1629
MissingFormLabel
- 150
Woo V,
Alenghat T.
Epigenetic regulation by gut microbiota. Gut Microbes 2022; 14 (01) 2022407
MissingFormLabel
- 151
Alenghat T,
Osborne LC,
Saenz SA.
et al.
Histone deacetylase 3 coordinates commensal-bacteria-dependent intestinal homeostasis.
Nature 2013; 504 (7478) 153-157
MissingFormLabel
- 152
Tang R,
Zha H,
Liu R,
Lv J,
Cao D,
Li L.
Sodium butyrate attenuates liver fibrogenesis via promoting H4K8 crotonylation. Mol
Cell Biochem 2025
MissingFormLabel
- 153
Wu SE,
Hashimoto-Hill S,
Woo V.
et al.
Microbiota-derived metabolite promotes HDAC3 activity in the gut. Nature 2020; 586
(7827) 108-112
MissingFormLabel
- 154
Yang W,
Yu T,
Huang X.
et al.
Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22
production and gut immunity. Nat Commun 2020; 11 (01) 4457
MissingFormLabel
- 155
Habash NW,
Sehrawat TS,
Shah VH,
Cao S.
Epigenetics of alcohol-related liver diseases. JHEP Rep Innov Hepatol 2022; 4 (05)
100466
MissingFormLabel
- 156
Virtue AT,
McCright SJ,
Wright JM.
et al.
The gut microbiota regulates white adipose tissue inflammation and obesity via a family
of microRNAs. Sci Transl Med 2019; 11 (496) 1892
MissingFormLabel
- 157
Schueller F,
Roy S,
Vucur M,
Trautwein C,
Luedde T,
Roderburg C.
The role of miRNAs in the pathophysiology of liver diseases and toxicity. Int J Mol
Sci 2018; 19 (01) 261
MissingFormLabel
- 158
Tadese DA,
Mwangi J,
Luo L.
et al.
The microbiome's influence on obesity: mechanisms and therapeutic potential. Sci China
Life Sci 2025; 68 (03) 657-672
MissingFormLabel
- 159
de La Serre CB,
Ellis CL,
Lee J,
Hartman AL,
Rutledge JC,
Raybould HE.
Propensity to high-fat diet-induced obesity in rats is associated with changes in
the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 2010;
299 (02) G440-G448
MissingFormLabel
- 160
Ley RE,
Bäckhed F,
Turnbaugh P,
Lozupone CA,
Knight RD,
Gordon JI.
Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005; 102 (31) 11070-11075
MissingFormLabel
- 161
Ley RE,
Turnbaugh PJ,
Klein S,
Gordon JI.
Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444 (7122)
1022-1023
MissingFormLabel
- 162
Gonzalez-Quintela A,
Alonso M,
Campos J,
Vizcaino L,
Loidi L,
Gude F.
Determinants of serum concentrations of lipopolysaccharide-binding protein (LBP) in
the adult population: the role of obesity. PLoS One 2013; 8 (01) e54600
MissingFormLabel
- 163
Zou ZY,
Hu YR,
Ma H.
et al.
Coptisine attenuates obesity-related inflammation through LPS/TLR-4-mediated signaling
pathway in Syrian golden hamsters. Fitoterapia 2015; 105: 139-146
MissingFormLabel
- 164
Sheykhsaran E,
Abbasi A,
Ebrahimzadeh Leylabadlo H.
et al.
Gut microbiota and obesity: an overview of microbiota to microbial-based therapies.
Postgrad Med J 2023; 99 (1171) 384-402
MissingFormLabel
- 165
Ferrere G,
Wrzosek L,
Cailleux F.
et al.
Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury
in mice. J Hepatol 2017; 66 (04) 806-815
MissingFormLabel
- 166
Bajaj JS,
Gavis EA,
Fagan A.
et al.
A randomized clinical trial of fecal microbiota transplant for alcohol use disorder.
Hepatology 2021; 73 (05) 1688-1700
MissingFormLabel
- 167
Philips CA,
Phadke N,
Ganesan K,
Ranade S,
Augustine P.
Corticosteroids, nutrition, pentoxifylline, or fecal microbiota transplantation for
severe alcoholic hepatitis. Indian J Gastroenterol 2018; 37 (03) 215-225
MissingFormLabel
- 168
Chayanupatkul M,
Somanawat K,
Chuaypen N.
et al.
Probiotics and their beneficial effects on alcohol-induced liver injury in a rat model:
the role of fecal microbiota. BMC Complement Med Ther 2022; 22 (01) 168
MissingFormLabel
- 169
Li H,
Cheng S,
Huo J.
et al.
Lactobacillus plantarum J26 alleviating alcohol-induced liver inflammation by maintaining
the intestinal barrier and regulating MAPK signaling pathways. Nutrients 2022; 15
(01) 190
MissingFormLabel
- 170
Han SH,
Suk KT,
Kim DJ.
et al.
Effects of probiotics (cultured Lactobacillus subtilis/Streptococcus faecium) in the
treatment of alcoholic hepatitis: randomized-controlled multicenter study. Eur J Gastroenterol
Hepatol 2015; 27 (11) 1300-1306
MissingFormLabel
- 171
Bajaj JS,
Heuman DM,
Hylemon PB.
et al.
Randomised clinical trial: lactobacillus GG modulates gut microbiome, metabolome and
endotoxemia in patients with cirrhosis. Aliment Pharmacol Ther 2014; 39 (10) 1113-1125
MissingFormLabel
- 172
Stadlbauer V,
Mookerjee RP,
Hodges S,
Wright GA,
Davies NA,
Jalan R.
Effect of probiotic treatment on deranged neutrophil function and cytokine responses
in patients with compensated alcoholic cirrhosis. J Hepatol 2008; 48 (06) 945-951
MissingFormLabel
- 173
Li X,
Liu Y,
Guo X,
Ma Y,
Zhang H,
Liang H.
Effect of Lactobacillus casei on lipid metabolism and intestinal microflora in patients
with alcoholic liver injury. Eur J Clin Nutr 2021; 75 (08) 1227-1236
MissingFormLabel
- 174
Adachi Y,
Moore LE,
Bradford BU,
Gao W,
Thurman RG.
Antibiotics prevent liver injury in rats following long-term exposure to ethanol.
Gastroenterology 1995; 108 (01) 218-224
MissingFormLabel
- 175
Jiménez C,
Ventura-Cots M,
Sala M.
et al.
Effect of rifaximin on infections, acute-on-chronic liver failure and mortality in
alcoholic hepatitis: a pilot study (RIFA-AH). Liver Int 2022; 42 (05) 1109-1120
MissingFormLabel
- 176
Vlachogiannakos J,
Viazis N,
Vasianopoulou P,
Vafiadis I,
Karamanolis DG,
Ladas SD.
Long-term administration of rifaximin improves the prognosis of patients with decompensated
alcoholic cirrhosis. J Gastroenterol Hepatol 2013; 28 (03) 450-455
MissingFormLabel
- 177
Kalambokis GN,
Mouzaki A,
Rodi M,
Tsianos EV.
Rifaximin improves thrombocytopenia in patients with alcoholic cirrhosis in association
with reduction of endotoxaemia. Liver Int 2012; 32 (03) 467-475
MissingFormLabel
- 178
Louvet A,
Labreuche J,
Dao T.
et al.
Effect of prophylactic antibiotics on mortality in severe alcohol-related hepatitis:
a randomized clinical trial. JAMA 2023; 329 (18) 1558-1566
MissingFormLabel
- 179
Dethlefsen L,
Huse S,
Sogin ML,
Relman DA.
The pervasive effects of an antibiotic on the human gut microbiota, as revealed by
deep 16S rRNA sequencing. PLoS Biol 2008; 6 (11) e280
MissingFormLabel
- 180
Anand G,
Zarrinpar A,
Loomba R.
Targeting dysbiosis for the treatment of liver disease. Semin Liver Dis 2016; 36 (01)
37-47
MissingFormLabel
- 181
Riggio O,
Varriale M,
Testore GP.
et al.
Effect of lactitol and lactulose administration on the fecal flora in cirrhotic patients.
J Clin Gastroenterol 1990; 12 (04) 433-436
MissingFormLabel
- 182
Vandeputte D,
Falony G,
Vieira-Silva S.
et al.
Prebiotic inulin-type fructans induce specific changes in the human gut microbiota.
Gut 2017; 66 (11) 1968-1974
MissingFormLabel
- 183
Sergeev IN,
Aljutaily T,
Walton G,
Huarte E.
Effects of synbiotic supplement on human gut microbiota, body composition and weight
loss in obesity. Nutrients 2020; 12 (01) 222
MissingFormLabel
- 184
Patel D,
Desai C,
Singh D.
et al.
Synbiotic intervention ameliorates oxidative stress and gut permeability in an in
vitro and in vivo model of ethanol-induced intestinal dysbiosis. Biomedicines 2022;
10 (12) 3285
MissingFormLabel
- 185
Guo P,
Xue M,
Teng X.
et al.
Antarctic krill oil ameliorates liver injury in rats exposed to alcohol by regulating
bile acids metabolism and gut microbiota. J Nutr Biochem 2022; 107: 109061
MissingFormLabel
- 186
Zhong W,
Li Q,
Sun Q.
et al.
Preventing gut leakiness and endotoxemia contributes to the protective effect of zinc
on alcohol-induced steatohepatitis in rats. J Nutr 2015; 145 (12) 2690-2698
MissingFormLabel
- 187
Shen H,
Zhou L,
Zhang H.
et al.
Dietary fiber alleviates alcoholic liver injury via Bacteroides acidifaciens and subsequent
ammonia detoxification. Cell Host Microbe 2024; 32 (08) 1331-1346.e6
MissingFormLabel
- 188
Chuong V,
Farokhnia M,
Khom S.
et al.
The glucagon-like peptide-1 (GLP-1) analogue semaglutide reduces alcohol drinking
and modulates central GABA neurotransmission. JCI Insight 2023; 8 (12) e170671
MissingFormLabel
- 189
Quddos F,
Hubshman Z,
Tegge A.
et al.
Semaglutide and Tirzepatide reduce alcohol consumption in individuals with obesity.
Sci Rep 2023; 13 (01) 20998
MissingFormLabel
- 190
Shuwen H,
Kefeng D.
Intestinal phages interact with bacteria and are involved in human diseases. Gut Microbes
2022; 14 (01) 2113717
MissingFormLabel
- 191
Manohar P,
Tamhankar AJ,
Lundborg CS,
Nachimuthu R.
Therapeutic characterization and efficacy of bacteriophage cocktails infecting Escherichia
coli, Klebsiella pneumoniae, and Enterobacter species. Front Microbiol 2019; 10: 574
MissingFormLabel
- 192
Duan Y,
Young R,
Schnabl B.
Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat
Rev Gastroenterol Hepatol 2022; 19 (02) 135-144
MissingFormLabel
- 193
Sweere JM,
Van Belleghem JD,
Ishak H.
et al.
Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection.
Science 2019; 363 (6434) eaat9691
MissingFormLabel
- 194
Wu Q,
Li P,
Li X,
Ma L,
Chen K,
Man S.
Pueraria extract ameliorates alcoholic liver disease via the liver-gut-brain axis:
focus on restoring the intestinal barrier and inhibiting alcohol metabolism. J Agric
Food Chem 2024; 72 (44) 24449-24462
MissingFormLabel
- 195
Zhang H,
Li C,
Han L.
et al.
MUP1 mediates urolithin A alleviation of chronic alcohol-related liver disease via
gut-microbiota-liver axis. Gut Microbes 2024; 16 (01) 2367342
MissingFormLabel
- 196
Shen X,
Shi C,
Xu J.
et al.
Intestinal microbiota homeostasis analysis in riboflavin-treated alcoholic liver disease.
Commun Biol 2024; 7 (01) 1030
MissingFormLabel
- 197
Su J,
Dai Y,
Wu X.
et al.
Maslinic acid alleviates alcoholic liver injury in mice and regulates intestinal microbiota
via the gut-liver axis. J Sci Food Agric 2024; 104 (13) 7928-7938
MissingFormLabel
- 198
Kouno T,
Zeng S,
Wang Y.
et al.
Engineered bacteria producing aryl-hydrocarbon receptor agonists protect against ethanol-induced
liver disease in mice. Alcohol Clin Exp Res (Hoboken) 2023; 47 (05) 856-867
MissingFormLabel